- **12.-** Calcular el campo electrostático \overrightarrow{E} originado por una distribución lineal e indefinida de carga + λ_0 = cte.
- 13.- Un anillo circular de radio R_0 está cargado con una densidad de carga uniforme $+\lambda_0$.

Calcular el campo y el potencial en un punto del eje de revolución.

- **14**.- Una superficie circular de radio R_0 está cargada con una distribución uniforme $+\sigma_0$. Calcular el campo \overrightarrow{E} en un punto del eje de revolución.
- 15.- Resolver el problema electrostático semejante al anterior, para una distribución de carga uniforme en una corona circular de radios R_1 y R_2 .

Particularizar el resultado obtenido a la situación donde $R_I \to 0$, y, a la vez $R_2 \to \infty$.

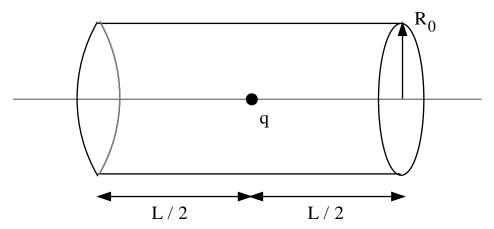
16.- Una superficie cilíndrica de radio R_0 y altura L, tiene una carga distribuida uniformemente.

Calcular el campo \overrightarrow{E} en cualquier punto del eje de revolución.

17.- Una superficie en forma de hemiesfera posee una distribución de carga positiva σ_0 = cte.

Calcular el campo electrostático en el centro de la hemiesfera.

18.- Calcular el campo electrostático \overrightarrow{E} originado por dos distribuciones de carga lineales, paralelas e indefinidas, con densidades $+\lambda_0$ y $-\lambda_0$ situadas a una distancia d en el vacío.


19.- El espacio comprendido entre dos superficies esféricas de radios R_1 y R_2 , contiene una carga definida por la función $\rho(r) = A/r^2$, siendo A una constante positiva.

Suponiendo que la superficie interior $(r = R_I)$ se encuentra a potencial V_0 , determinar el campo \overrightarrow{E} y potencial en todo el espacio.

20.- Calcular el campo originado por una distribución de carga uniforme e indefinida de densidad ρ_0 comprendida entre dos cilindros coaxiales de radios $R_I = R_0$, y $R_I = 2 R_0$.

Considerar la superficie de radio R_1 a un potencial V_0 constante.

21.- Comprobar el teorema de Gauss para una carga puntual q, localizada en el interior de la superficie de forma cilíndrica como muestra la figura.

