HOJA DE EJERCICIOS 2: Lógica de predicados

EDyL 2021-2022

[Fecha de publicación: 2021/09/30]

[Fecha de entrega: 2021/10/05, 09:00]

[Resolución en clase: 2021/10/05]

NOTA: Incluye explicaciones para tus respuestas. Un ejercicio cuya respuesta es correcta, pero que no incluye explicaciones podrá ser valorado como incompleto.

EJERCICIO 1.

Consideremos la ontología:

<u>Variables</u>: x, y, z, w, ...

Predicados

Nombre	Aridad	Descripción
С	1	C(x) evalúa a "Verdadero" si y solo si x es
		un ordenador, "Falso" en caso contrario.
S	1	S(x) evalúa a "Verdadero" si y solo si x es
		un estudiante, "Falso" en caso contrario.
W	1	W(x) evalúa a "Verdadero" si y solo si x es
		funciona, "Falso" en caso contrario.
U	2	C(x) evalúa a "Verdadero" si y solo si x usa
		y, "Falso" en caso contrario.

Función

teclado	1	teclado(x): referencia al teclado de x

Escribe FBFs en lógica de predicados que formalicen de la manera más literal posible las siguientes aseveraciones. Se puede utilizar el predicado de igualdad en caso de que sea necesario.

- I. "Hay un ordenador cuyo teclado no funciona y que no es utilizado por ningún estudiante "
- II. "Ningún estudiante usa dos (o más de dos) ordenadores"
- III. "Cada uno de los ordenadores es utilizado por exactamente un estudiante"

EJERCICIO 2:

Dada la siguiente ontología para conjuntos:

	Símbolo	Interpretación / dominio
Constantes	N	Conjunto de los números naturales.
	\mathbb{R}	Conjunto de los números reales.
Variables	Х	Objeto.
	s, s'	Conjunto.
Predicados	Pertenece_a(x, s)	Evalúa a <i>Verdadero</i> si x pertenece a s.
	Subconjunto(s, s')	Evalúa a <i>Verdadero</i> si s es un subconjunto de s'.
Funciones	conj_potencia(s)	Conjunto potencia (conjunto de los
		subconjuntos) del conjunto s.
	cardinalidad(s)	Cardinalidad (nº de elementos) del conjunto s.

Formula las siguientes aserciones como FBFs en lógica de predicados.

Utiliza el predicado de igualdad en caso de que sea necesario.

- **a)** La cardinalidad del conjunto de números reales coincide con la cardinalidad del conjunto potencia de los números naturales.
- **b)** Todos los subconjuntos de un determinado conjunto, y únicamente ellos, pertenecen al conjunto potencia de dicho conjunto.
- c) Un conjunto que no contiene ningún elemento (el conjunto vacío) es un elemento del conjunto potencia de cualquier conjunto.
- **d)** Consideremos x, un elemento del conjunto s. El conjunto que contiene a x y únicamente a x pertenece al conjunto potencia de s.

EJERCICIO 3. Consideremos la siguiente ontología:

Constantes: A, B, C. (letras)

ABC (palabra)

IMPORTANTE: No se pueden introducir otras constantes.

Variables: x, y, z,... (letras)

 w_1, w_2, w_3, \dots (palabras sin letras repetidas)

Predicados: R(x, y, w): Evalúa a *Verdadero* en el caso de que las letras x

e y aparezcan como la secuencia xy en la palabra w, Falso en

caso contrario.

Funciones: p(y, x, w): Referencia a la palabra con la secuencia yx que

resulta de permutar las letras x e y en la palabra w. Estas

letras aparecen en w como la secuencia xy.

Proporciona la formalización más simple posible de la siguiente base de conocimiento en lógica de predicados:

- (i) Las letras A y B aparecen como la secuencia AB en la palabra ABC.
- (ii) Las letras B y C aparecen como la secuencia BC en la palabra ABC.
- (iii) La permutación de las letras x e y en una palabra que contiene la secuencia xy transforma la palabra original en una nueva con la secuencia yx.
- (iv) La permutación de las letras x e y en una palabra que contiene la secuencia xyz transforma la palabra original en una nueva con la secuencia yxz.
- (v) La permutación de las letras y, z en una palabra que contiene la secuencia xyz transforma la palabra original en una nueva con la secuencia xzy.