

TEMA 2

PRINCIPIO CERO Y TEMPERATURA

- 1. INTRODUCCIÓN
- 2. POSTULADOS INICIALES
- 3. CONCEPTO DE TEMPERATURA
- 4. ESCALAS TERMOMÉTRICAS
- 5. TERMÓMETROS

REFERENCIAS

* C. Fernández Pineda, S. Velasco Maíllo (Termodinámica) (2009): Capítulo 2: (Principio cero)

* M.W. Zemansky y R.H. Dittman (Calor y Termodinámica): Capítulo 1 - (Temperatura)

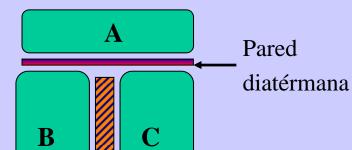
* J. Aguilar Peris (Curso de Termodinámica):

Capítulo 2 - (Temperatura y principio cero)

1. INTRODUCCIÓN

- * Estructura formal de la Termodinámica: (Dos postulados y tres Principios)
- Primer Postulado: (Principio General de la Termodinámica)
- Segundo Postulado: (Principio Cero)

- Primer Principio: (Principio de Conservación de la Energía)
- Segundo Principio: (Principio de Incremento de la Entropía)
- <u>Tercer Principio</u>: (Principio de Inaccesibilidad del Cero Absoluto)


2. POSTULADOS INICIALES

* Primer Postulado: (Principio general de la Termodinámica)

Todo sistema <u>aislado</u> en el curso del tiempo alcanza un estado de equilibrio termodinámico que no puede abandonar de modo espontáneo

- → Garantiza la existencia de estados de equilibrio termodinámico en los sistemas termodinámicos
- → Existencia de funciones de estado de un sistema en equilibrio termodinámico (por medio de variables de estado)

↔ Equilibrio térmico

$$Si \begin{pmatrix} A \leftrightarrow B \\ A \leftrightarrow C \end{pmatrix} \Rightarrow B \leftrightarrow C$$

James Clerk Maxwell (1831-1879)

* Segundo Postulado: (Principio Cero) J.C. Maxwell 1871

"El equilibrio térmico de un sistema A separadamente con los sistemas B y C, implica el equilibrio térmico de los sistemas B y C".

↔ Propiedad transitiva del equilibrio térmico

Pared

adiabática

- Se formuló 1^a vez por Ralph H. Fowler y Guggenheim (1939)
- Hasta 1950 no se admite como Principio
- ⇒ Justifica la existencia de una función de estado que llamaremos "Temperatura"
 - ← Caracterización del equilibrio térmico entre sistemas

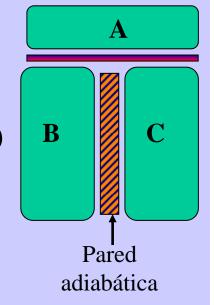
3. CONCEPTO DE TEMPERATURA

(Justificación matemática de la temperatura, Temperatura empírica)

- ⇒ Definir una función de estado "Temperatura del sistema"
- \rightarrow Sistemas simples (2 grados de libertad): 2 variables de estado (X, Y)
- Considerar los 3 sistemas (A, B, C)

$$A \leftrightarrow B: f_{AB}(X_A, Y_A, X_B, Y_B) = 0$$

$$A \leftrightarrow C: f_{AC}(X_A, Y_A, X_C, Y_C) = 0$$

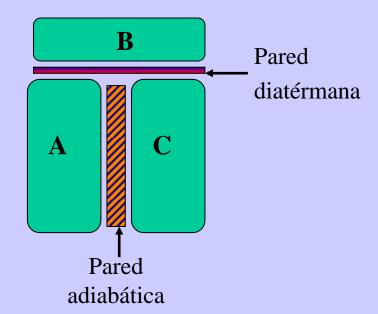

$$X_A = g_{AB}(Y_A, X_B, Y_B)$$

$$X_A = g_{AC}(Y_A, X_C, Y_C)$$

$$A \leftrightarrow C$$
: $f_{AC}(X_A, Y_A, X_C, Y_C) = 0 \int X_A = g_{AC}(Y_A, X_C, Y_C)$

$$g_{AB}(Y_A, X_B, Y_B) = g_{AC}(Y_A, X_C, Y_C) \leftarrow$$

 $B \leftrightarrow C: f_{BC}(X_B, Y_B, X_C, Y_C) = 0 \longleftarrow$ Principio cero:


Simplificar
$$Y_A$$
: $t_B(X_B, Y_B) = t_C(X_C, Y_C)$

* Repetir el mismo razonamiento:

$$t_A(X_A, Y_A) = t_C(X_C, Y_C)$$

$$t_A(X_A, Y_A) = t_B(X_B, Y_B) = t_C(X_C, Y_C)$$

⇒ Debe existir una función de estado definida para cada sistema, que adquiere el mismo valor en cada uno de ellos cuando se encuentran en equilibrio térmico

$$t = t(X, Y)$$
 \Rightarrow Temperatura

- ¿Cómo podemos medir esta función temperatura en un sistema de nuestro interés y qué unidades le asignamos?
- → Termómetros: distintas magnitudes termométricas → Temperatura empírica

 Distintas escalas de medida y ecuaciones termométricas (Puntos fijos) →

 Escalas termométricas.

* Los sistemas A y B son sales paramagnéticas con coordenadas (H,M) y (H',M'), respectivamente; mientras que el sistema C es un gas con coordenadas (P,V). Cuando A y C están en equilibrio térmico se cumple:

$$nRCH - MPV = 0$$

y cuando lo están B y C se cumple: M'PV - nR(C'H' + aM') = 0Siendo n, R, a, C, C' constantes.

- ¿Cuáles son las funciones del par de variables de cada sistema, iguales entre sí en el equilibrio térmico?.
- ¿ Cuál es la relación que expresa el equilibrio térmico entre los sistemas A y B?.
- * 3 sistemas, que llamaremos 1, 2 y 3 y que tienen el volumen y la presión como variables mecánicas, se ponen en contacto térmico por parejas. Cuando el primero y el segundo están en equilibrio térmico se cumple:

$$P_1 V_1 - P_2 V_2 = b P_1$$

y cuando lo están el segundo y el tercero: $V_3(P_2V_2 - P_3V_3) = a$ donde a y b son constantes.

¿Cumplen estos tres gases el principio cero?. Si lo hacen, ¿ Cuáles son las funciones que se igualan en el equilibrio térmico?.

4. ESCALAS TERMOMÉTRICAS

- Termómetros en equilibrio térmico con el sistema
- Magnitud macroscópica de un sistema que varía al hacerlo la temperatura (magnitud termométrica): (Longitud de una columna de mercurio, f.e.m de un termopar, resistencia eléctrica de un hilo metálico, etc....)⇒
- Elegir la magnitud termométrica adecuada: Condiciones
- 1°. Relación entre el valor de la magnitud medida y el valor asignado a la temp.
- 2º. Pequeñas variaciones de temp. deben originar apreciables variaciones de la propiedad termométrica.
- 3°. Diferentes termómetros utilizando la misma propiedad termométrica deben indicar la misma temp. en los mismos estados.
- 4°. El intervalo de temp. elevado.
- 5°. No debe poseer inercia.
- 6°. Tamaño reducido del termómetro utilizado.

Algunos termómetros

Dispositivo termométrico	Propiedad medida		
Termómetro de mercurio	Dilatación de un líquido		
Termómetro bi(tri)metálico	Dilatación de sólidos		
Termómetro de gas a V constante (P)	Presión de un gas		
Termómetro de gas a P constante (P)	Volumen de un gas		
Termómetro de presión de vapor (P)	Presión de vapor		
Termómetro de platino	Resistencia eléctrica de un metal		
Termistor	Resistencia eléctrica de un semiconductor		
Termopar	Fem termoeléctrica		
Termómetro de condensador (P)	Constante dieléctrica		
Termómetro magnético (P)	Susceptibilidad magnética		
Pirómetro óptico (P)	Intensidad de la luz		
Pirómetro de radiación total (P)	Emisión de energía térmica		
Termómetros de índice de refracción (P)	Índice de refracción		
Termómetro de Ruido (P)	Ruido de una resistencia eléctrica		

(P) se utilizan como termómetros primarios

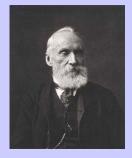
- * Establecer la escala adecuada (Establecer la correspondencia entre la propiedad termométrica y la temperatura) \rightarrow "Temperatura empírica"
- * Correlacionar la magnitud termométrica con la temperatura (t) mediante una "ecuación termométrica" elegida arbitrariamente.
- * Función cuadrática, logarítmica, etc.
- * Ecuaciones lineales $[t = a \ x + b \ o \ t = a \ x]$ cuyas constantes se determinan por medio de "puntos fijos": p.e. Punto de hielo $(0^{\circ}C)$ o del vapor de agua $(\sim 100^{\circ}C)$.
 - → Escalas empíricas
 - ⇒Escala centígrada (Celsius, °C) 1741

Anders Celsius (1701-1744)

⇒Escala Fahrenheit (°F) 1709

Punto de hielo: 32°F

Punto de vapor de agua: 212 °F



Daniel Gabriel Fahrenheit (1686-1736)

$$T(^{\circ}F) = 1.8 \ T(^{\circ}C) + 32$$

Ojo: Se indica aquí las dos escalas Kelvin y Rankine solamente para poder realizar la conversión. Se hablará de la temperatura absoluta una vez introducido el 2º Principio de la Termodinámica.

⇒Escala Kelvin (K) 1848

Sir William Thomson, lord Kelvin
(1824-1907)

$$T(K) = T(^{\circ}C) + 273.15$$

⇒Escala Rankine (R) 1859

William John Macquorn Rankine (1820-1872)

$$T(R) = T(^{\circ}F) + 459.67$$

⇒Escala de temperatura del gas ideal

* Comparar las medidas que proporcionan los diferentes termómetros: "Termómetro patrón" \Rightarrow Termómetro de gas

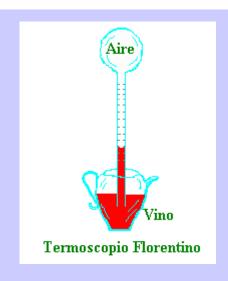
* En 1730 el físico francés Ferchault de Réamur construyó un termómetro de dilatación con alcohol metílico como sustancia termométrica y propuso la escala de temperatura que lleva su nombre, Réamur, °R. En ella, la temperatura es función lineal de la variable termométrica y los puntos fijos de hielo y de vapor toman los valores 0°R y 80°R, respectivamente.

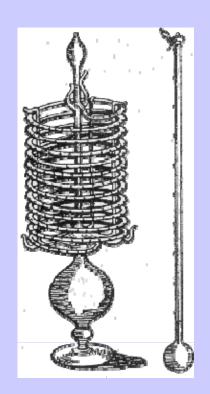
Establecer las equivalencias con las escalas Celsius y Ferenheit y determinar el valor Réamur del cero absoluto.

* Un termistor obedece la ley: $R(\Omega) = R_0 e^{\frac{B}{T(K)}}$

donde R_0 y B son constantes. Cuando se calibra dicho termistor en el punto triple del agua se encuentra una resistencia R_3 =938.7 Ω y en el punto de vapor R_v =1055.2 Ω . Hallar la temperatura que mide ese termistor cuando su lectura es R=1004.5 Ω .

* PRÁCTICA

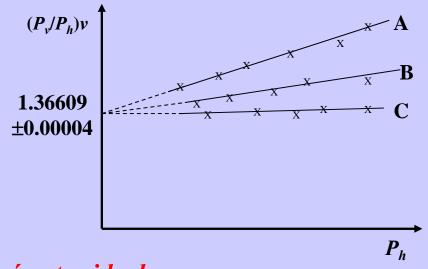

Calibrado de un termómetro de resistencia y de un termistor

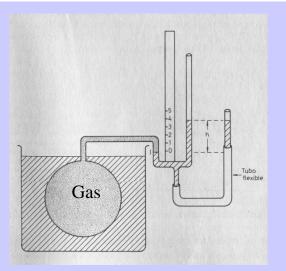


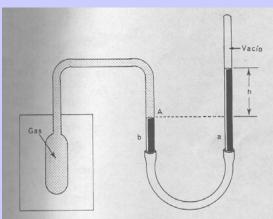
5. TERMÓMETROS

* Termoscopios

- 250 a.C. (Filón de Bizancio) → Termoscopio de Filón
- Galileo Galilei (1564-1642) → Redescubrió el termoscopio (1597) Termo-baroscopio
- Giovanni Francesco Sagredo (1571-1620) →
 "Grado en una escala de temperaturas"
- Jean Leurechon (1593-1670) → Denominación Termómetro (1624)
- Fernando II de Médicis (1610-1670) → Termómetro de Galileo (1645)
- Academia del Cimento de Florencia (1657) → Gran variedad de artísticos termómetros de vidrio
- S. Velasco Maillo y C. Fernández Pineda "Un paseo por la historia de la termometría" REF Julio-Septiembre de 2005. (Notas históricas)
- C. Fernández Pineda y S. Velasco Maillo "*Sobre la Medida de la Temperatura*"; Rev. R. Acad. Cienc. Exact. Fis. Natu. (Esp); Vol. 9, N° 2, pp. 337-356 (2005).






Termómetro de gas (volumen constante)

⇒Escala de temperatura del gas ideal

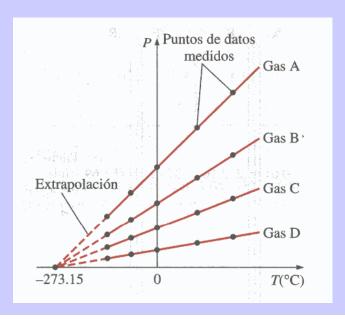
- Hidrógeno o helio
- Hielo fundente $\rightarrow P_h$
- Agua en ebullición $\rightarrow P_v$
- Se extrae una cantidad de gas y se vuelve a realizar las mismas operaciones →

$$P_h$$
 $\lim_{P_h \to 0} \left(\frac{P_v}{P_h} \right)_V = 1.36609 \pm 0.00004$

⇒ Termómetro ideal

$$\frac{T_{v}}{T_{h}} = \lim_{P_{h} \to 0} \left(\frac{P_{v}}{P_{h}}\right)_{V} = 1.36609$$

Diferencia entre las temperaturas $T_v y T_h$ $\rightarrow 100 \ grados$


\Rightarrow T_h =273.15 $K \leftrightarrow$ Temperatura absoluta de fusión del hielo T_v =373.15 $K \leftrightarrow$ Temperatura de ebullición del agua

$$\frac{T}{273.15} = \lim_{P_h \to 0} \left(\frac{P}{P_h} \right)_V$$

- ⇒ 1954 (X conferencia de Pesas y Medidas, CIPM): Punto fijo único estándar
- → Punto triple del agua (273.16 K)

$$\frac{T}{273.16} = \lim_{P_{p,T} \to 0} \left(\frac{P}{P_{p,T}} \right)_{V}$$

- Baja presión: T α P (V=Cste)
- T= a + b P (a y b se determinan de forma experimental)
- Si el punto de hielo (0°C) y el punto de vapor (100°C) → la escala de temperatura del gas coincidirá con la escala Celsius
 - ⇒Escala absoluta de temperatura de gas (a=0)

Escala internacional de temperaturas de 1990 (EIT-90)

- 1927 se adoptó la primera escala internacional de temperaturas (EIT-1927).
 - Dos objetivos: 1- Escala de base común para la medida de temperaturas
 - 2- La base debería contener y explotar la alta reproducibilidad de determinados termómetros secundarios:
 - * Termómetros de resistencia de platino
 - * Termopar platino/platino-rodio
- EIT-1927 fue revisada, ampliada y enmendada en 1948, 1958, 1962, 1968, 1976 y 1990 (actualmente en uso).
- La EIT-90 se basa en una serie de puntos fijos y reproducibles y consta de unos termómetros secundarios.

Puntos fijos	T ₉₀ (K)	t ₉₀ (°C)	Termómetro utilizado
Punto de presión del vapor de helio	3 a 5	-270.15 a -268.16	
Punto triple del hidrógeno	13.80	-259.35	Gas helio
Punto triple del neón	24.56	-248.59	
Punto triple del oxígeno	54.36	-218.79	
Punto triple del argón	83.80	-189.34	
Punto triple del mercurio	234.32	-38.83	
Punto triple del agua*	273.16	0.01	Resistencia de platino
Punto de fusión del galio	302.91	29.76	
Punto de solidificación del cinc	692.67	419.53	
Punto de solidificación del aluminio	933.47	660.32	
Punto de solidificación de la plata	1234.93	961.78	
Punto de solidificación del oro	1337.33	1064.18	Termómetro de
Punto de ebullición del cobre	1357.77	1084.62	radiación