

TEMA 5 ECUACIONES DE ESTADO

- 1. INTRODUCCIÓN
- 2. ECUACIONES DE ESTADO
- 3. ECUACIONES DE ESTADO TÉRMICA Y ENERGÉTICA
- 4. LAS MATEMÁTICAS DE LA TERMODINÁMICA NECESARIAS EN EL PRESENTE TEMA
- 5. COEFICIENTES TÉRMICOS:
 - Coeficiente de dilatación térmica
 - Coeficiente piezotérmico
 - Coeficiente de presión
 - Coeficiente de compresibilidad isotérmico
 - Coeficiente de compresibilidad adiabático

REFERENCIAS

M.W. Zemansky y R.H. Dittman (Calor y Termodinámica): Capítulo 9: Sustancias puras

J. Aguilar Peris (Curso de Termodinámica):

Capítulo 3: Primer Principio de la Termodinámica

F. Tejerina (Termodinámica: Tomo 1):

Capítulo 4: Ecuaciones de estado

1. INTRODUCCIÓN

$$W = \int_{a_1}^{a_2} A da$$

A: Fuerza generalizada

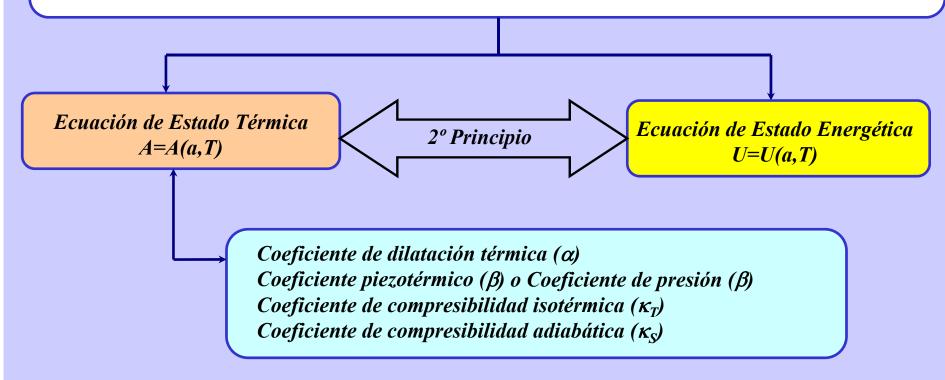
da: Desplazamiento generalizado

- → Se necesitan relaciones entre las fuerzas (A) y los desplazamientos (a) válidas para el proceso cuasiestático considerado.
- → Ecuación de estado da repuesta a esta necesidad

Relación entre variables termodinámicas para estados de equilibrio

2. ECUACIONES DE ESTADO

Ecuación de estado: "Es cualquier función, obtenida teórica o experimentalmente, que relaciona las variables termodinámicas que definen los estados de equilibrio de un sistema termodinámico"



E.j.: Sistema simple generalizado (A,a,T)

Un ecuación de estado: F(A,a,T)=0

Función válida en cualquier estado de equilibrio del sistema considerado

→ Un sistema puede poseer muchas ecuaciones de estado

Recordatorio: Principio Cero

(Variables intensivas y extensivas, Teorema de Euler)

→ Función de estado "Temperatura"

$$t_A(A_A, a_A) = t_B(A_B, a_B) = t_C(A_C, a_C)$$

3. ECUACIONES DE ESTADO TÉRMICA Y ENERGÉTICA

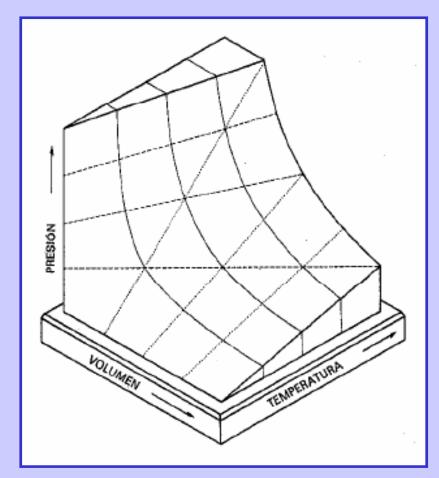
- ⇒ Ecuación de estado térmica relaciona las fuerzas y desplazamientos generalizados y la temperatura → Coeficientes térmicos
 - Para un sistema simple:

$$A=A(a, T)$$

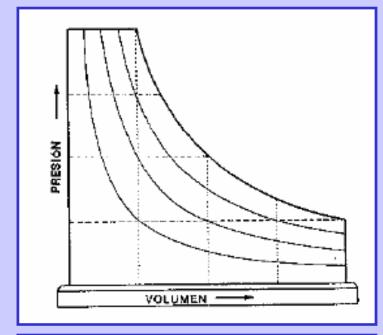
- Para un sistema compuesto: Se obtendrán varias ecuaciones térmicas de estado, una por cada fuerza generalizada que posee el sistema
- ⇒ Ecuación de estado energética expresa la energía interna en función de las variables de estado elegidas → Propiedades energéticas del sistema

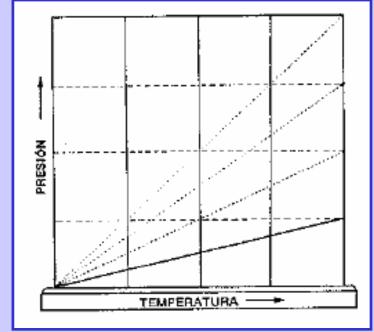
$$U=U(a, T)$$

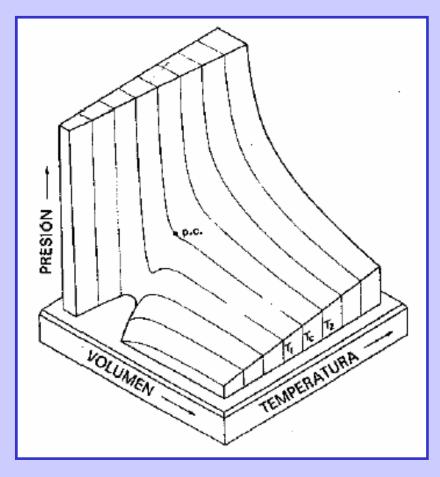
* Representación gráfica de las ecuaciones de estado



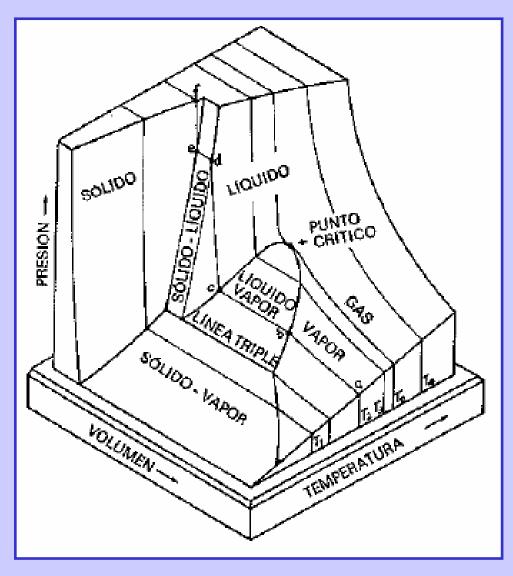
Superficie de estado (P V T) de un gas ideal







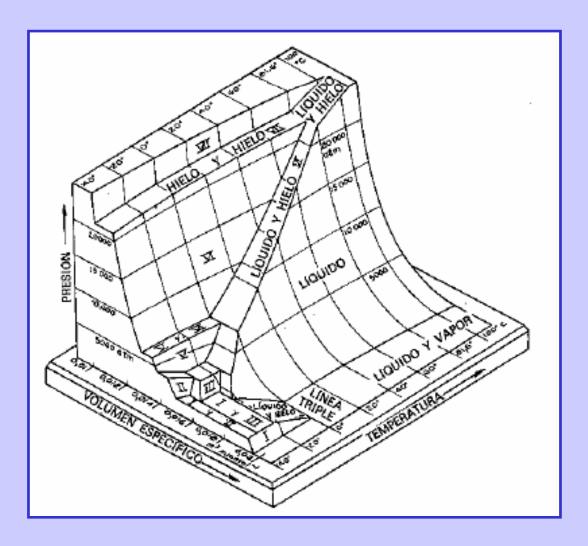
Superficie de estado (P V T) de un gas de Van der Waals



Superficie de estado (P V T) de una sustancia que se contrae al solidificarse



Superficie de estado (P V T) de una sustancia que se expande al solidificarse



Superficie de estado (P V T) del agua

4. LAS MATEMÁTICAS DE LA TERMODINÁMICA

* Propiedades de naturaleza derivada

Función implícita: $f(x, y, z)=0 \implies x = x(y, z)$; y = y(x, z); z = z(x, y)

$$dx = \left(\frac{\partial x}{\partial y}\right)_z dy + \left(\frac{\partial x}{\partial z}\right)_y dz \qquad dy = \left(\frac{\partial y}{\partial x}\right)_z dx + \left(\frac{\partial y}{\partial z}\right)_x dz \qquad dz = \left(\frac{\partial z}{\partial x}\right)_y dx + \left(\frac{\partial z}{\partial y}\right)_x dy$$

$$dx = \left(\frac{\partial x}{\partial y}\right) \left[\left(\frac{\partial y}{\partial x}\right)_z dx + \left(\frac{\partial y}{\partial z}\right)_x dz \right] + \left(\frac{\partial x}{\partial z}\right)_y dz$$

$$\left[1 - \left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial x}\right)_z\right] dx - \left[\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x + \left(\frac{\partial x}{\partial z}\right)_y\right] dz = 0$$

$$\left(\frac{\partial x}{\partial z}\right)_z = \left(\frac{\partial z}{\partial x}\right)_y^{-1}$$

$$\left(\frac{\partial x}{\partial y}\right)_z = \left(\frac{\partial y}{\partial x}\right)_z^{-1}$$

$$\left(\frac{\partial x}{\partial z}\right)_{y} = -\left(\frac{\partial x}{\partial y}\right)_{z} \left(\frac{\partial y}{\partial z}\right)_{x}$$

$$\left(\frac{\partial x}{\partial z}\right) = \left(\frac{\partial z}{\partial z}\right)^{-1}$$

$$\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1$$

Relación triangular; Regla del -1; Teorema de reciprocidad

* Sustituyendo las variables x, y, z por los parámetros termodinámicos p, V, T relacionados en la ecuación de estado f(P,V,T)=0

$$\left(\frac{\partial V}{\partial T}\right)_{p} \cdot \left(\frac{\partial T}{\partial V}\right)_{p} = 1$$

$$\left(\frac{\partial p}{\partial V}\right)_T \cdot \left(\frac{\partial V}{\partial p}\right)_T = 1$$

$$\left(\frac{\partial V}{\partial T}\right)_{p} \cdot \left(\frac{\partial T}{\partial V}\right)_{p} = 1 \qquad \left(\frac{\partial p}{\partial V}\right)_{T} \cdot \left(\frac{\partial V}{\partial p}\right)_{T} = 1 \qquad \left(\frac{\partial T}{\partial p}\right)_{V} \cdot \left(\frac{\partial p}{\partial T}\right)_{V} = 1$$

$$\left(\frac{\partial p}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_p \left(\frac{\partial T}{\partial p}\right)_V = -1$$

6 derivadas parciales y cuatro relaciones \Rightarrow dos son independientes

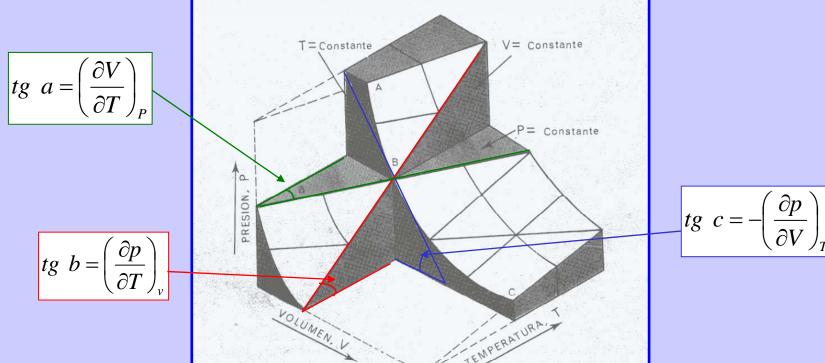
$$dx = \left(\frac{\partial x}{\partial y}\right)_z dy + \left(\frac{\partial x}{\partial z}\right)_x dz \longrightarrow \frac{dx}{dw} = \left(\frac{\partial x}{\partial y}\right)_z \frac{dy}{dw} + \left(\frac{\partial x}{\partial z}\right)_y \frac{dz}{dw} \longrightarrow \frac{\mathbf{Z} \mathbf{Cste}}{\mathbf{Z} \mathbf{Cste}} \longrightarrow \left(\frac{\partial x}{\partial y}\right)_z = \left(\frac{\partial x}{\partial w}\right)_z \left(\frac{\partial w}{\partial w}\right)_z = \left(\frac{\partial w}{\partial w}\right)_z \left(\frac{\partial w}{\partial w}\right)_z = \left(\frac{\partial w$$

*
$$Si x = x(y, w)$$
:

* Si
$$x = x(y, w)$$
:
$$dx = \left(\frac{\partial x}{\partial y}\right)_{w} dy + \left(\frac{\partial x}{\partial w}\right)_{y} dw$$

$$\rightarrow$$
/dy (z constante):

* Significado geométrico de las derivadas parciales



$f(p, V, T) = 0 \rightarrow La$ ecuación de estado de un fluido puro cualquiera

$$dV = \left(\frac{\partial V}{\partial p}\right)_{T} dp + \left(\frac{\partial V}{\partial T}\right)_{p} dT$$

$$\frac{dV}{V} = \frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{T} dp + \left(\frac{\partial V}{\partial T}\right)_{p} dT$$

* Coeficiente de dilatación térmica: $(\alpha) \rightarrow [\alpha] = K^{-1}$

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p}$$

5. COEFIEICIENTES TÉRMICOS

 $f(p, V, T) = 0 \rightarrow La$ ecuación de estado de un fluido puro cualquiera

$$dV = \left(\frac{\partial V}{\partial p}\right)_T dp + \left(\frac{\partial V}{\partial T}\right)_p dT$$

$$dV = \left(\frac{\partial V}{\partial p}\right)_{T} dp + \left(\frac{\partial V}{\partial T}\right)_{p} dT \qquad \frac{dV}{V} = \frac{1}{V} \left(\frac{\partial V}{\partial p}\right)_{T} dp + \left(\frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{p}\right) dT$$

* <u>Coeficiente de dilatación térmica:</u> $(\alpha) \rightarrow [\alpha] = K^{-1}$ $\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T}\right)_{n} = \left(\frac{\partial \ln V}{\partial T}\right)_{n}$

$$\alpha = \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_p = \left(\frac{\partial \ln V}{\partial T} \right)_p$$

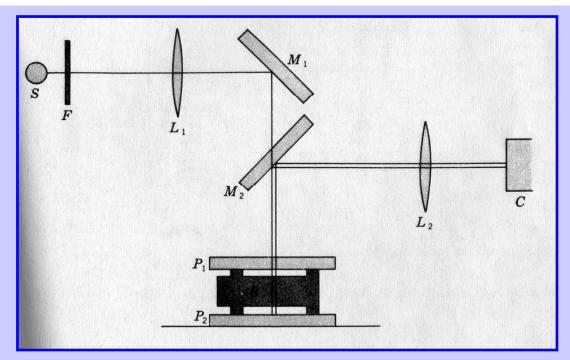
α depende en general de las variables de estado, p.e. (T) y (p). Esta dependencia casi siempre puede considerarse constante en amplios rangos de (T) y (p).

- La medida de \alpha en s\u00f3lidos puede realizarse mediante diversos m\u00e9todos:
 - Difracción de rayos X
 - Dilatómetro interferencial de Fizeau

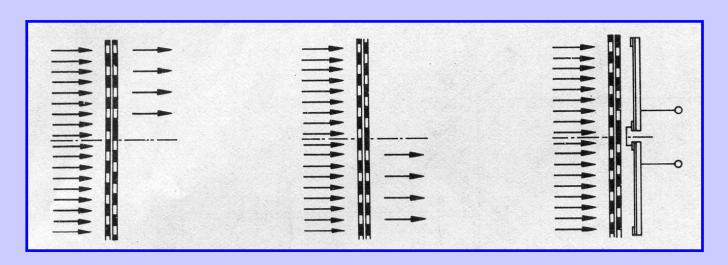
- Método eléctrico

- Método de la rejilla óptica

* En líquidos y gases: - Densímetros $\rho = \rho(T, p)$

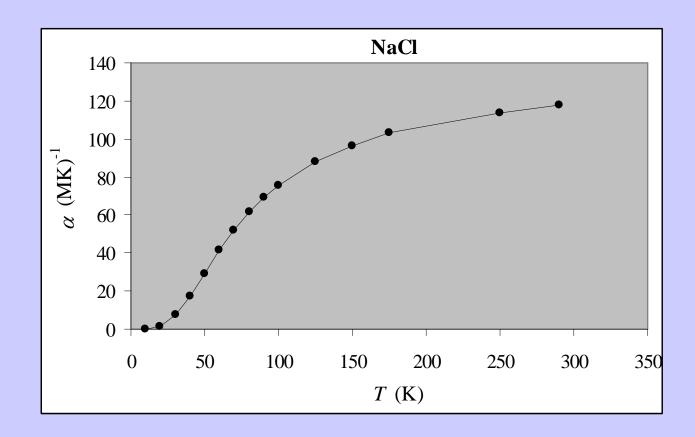


Dilatómetro interferencial de Fizeau



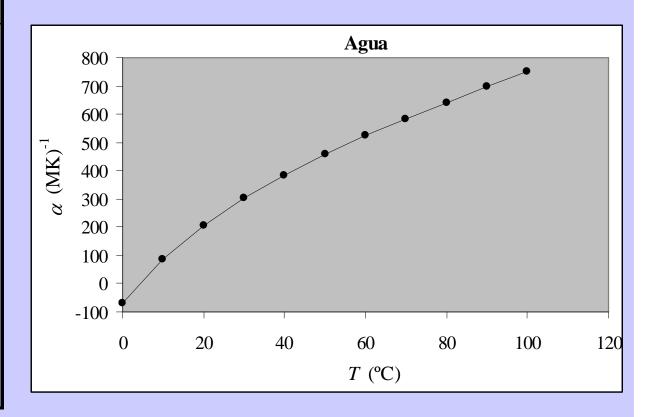
Método de la rejilla óptica

* Variación de \alpha con Typ

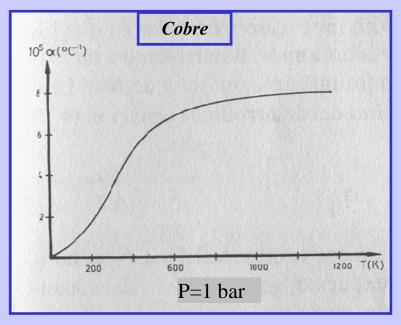


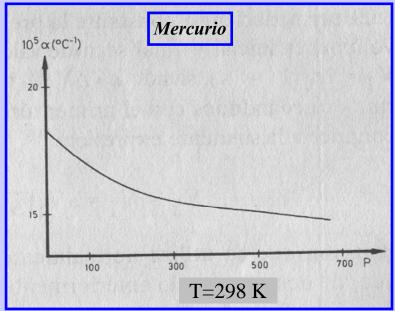
* Propiedades térmicas del agua

T	α		
(°C)	(MK) ⁻¹		
0	-67.89		
10	87.96		
20	206.80		
30	303.23		
40	385.30		
50	457.60		
60	523.07		
70	583.74		
80	641.11		
90	696.24		
100	750.30		



* Variación de a con Typ





Facultad de Ciencias Físicas (UCM)

* Una disolución de dos componentes cumple la condición de que el volumen total que ocupa es igual a la suma de los volúmenes que ocupan los componentes puros en las mismas condiciones de presión y temperatura. Sean ρ , ρ_1 y ρ_2 las densidades de la disolución y de sus componentes puros y $x_1=m_1/m$ y $x_2=m_2/m$ las fracciones másicas de los componentes en la disolución, cuyas masas cumplen: $m_1+m_2=m$. Hallar la relación que existe entre los coeficientes de dilatación térmica de la disolución y los de sus componentes puros en las mismas condiciones.

* Coeficiente piezotérmico: (B)

$$\beta = \frac{1}{p} \left(\frac{\partial p}{\partial T} \right)_{v} = \left(\frac{\partial \ln p}{\partial T} \right)_{v}$$

$$\rightarrow [\beta] = K^{-1}$$

- * Experimentalmente es el más difícil de medir

 Inconvenientes para conseguir condiciones de volumen constante
- ⇒ Se suelen determinar a partir de otros coeficientes térmicos
 - * <u>Coeficiente de presión:</u> (β)

$$\beta = \left(\frac{\partial p}{\partial T}\right)_{v}$$

$$[\beta] = PaK^{-1}$$

* <u>Coeficiente de compresibilidad isotérmica:</u> (κ_T) $\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial n} \right)$

$$\kappa_T = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_T$$

$$[\kappa_T] = Pa^{-1}$$

Igual que α , κ_T depende en general de las variables de estado, p.e. T y p aunque esta dependencia es tal que casi siempre puede considerarse constante en amplios rangos de T y p

Para sólidos y líquidos - Método estático (Termostato a T Cste., a presión alta y se mide la variación de volumen)

* Coeficiente de compresibilidad adiabática: (K)

$$\kappa_{s} = -\frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{s}$$

$$\rightarrow [K_S] = Pa^{-1}$$

→ Medidas dinámicas → Velocidad de ondas longitudinales en líquidos y de ondas longitudinales y transversales en sólidos

$$\kappa_{s} = \frac{1}{\rho c^{2}}$$

 $\kappa_{\overline{s}} = \frac{1}{\rho c^2}$ ρ : Densidad del medio c: Velocidad de la onda en el medio

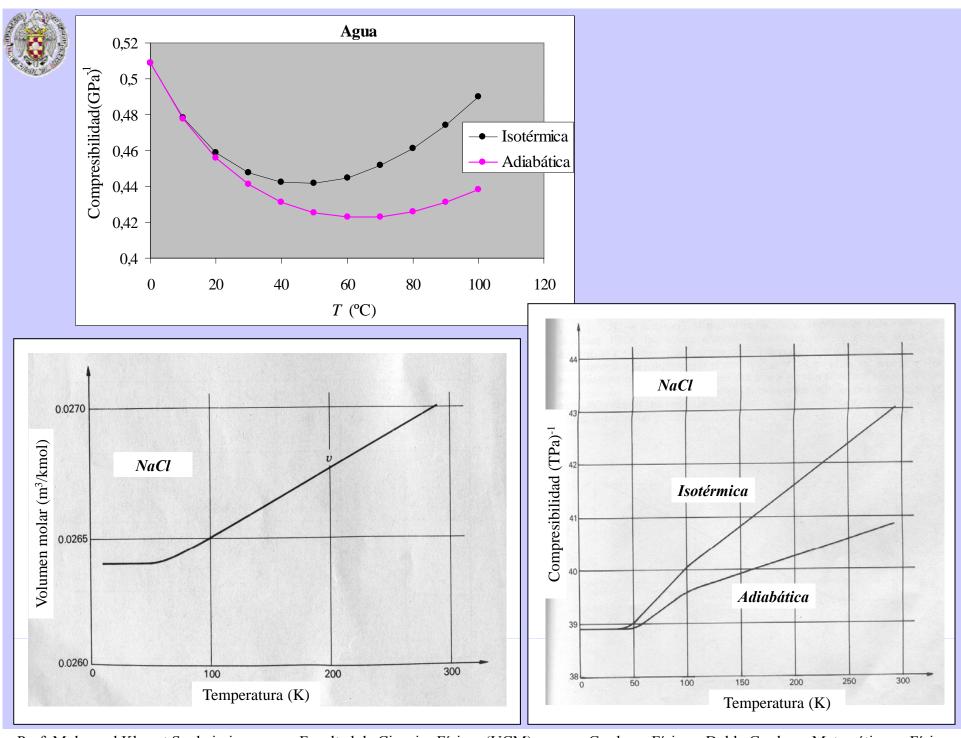
* Propiedades térmicas del agua

T	c	α	C_p	ρ	κ_T	$\mathcal{K}_{_{\!S}}$
(°C)	(m/s)	(MK) ⁻¹	(kJ/kg.K)	(kg/m^3)	(GPa) ⁻¹	(GPa) ⁻¹
0	1402.4	-67.89	4.2177	999.84	0.50885	0.50855
10	1447.2	87.96	4.1922	999.70	0.47810	0.47758
20	1482.3	206.80	4.1819	998.21	0.45891	0.45591
30	1509.1	303.23	4.1785	995.65	0.44770	0.44100
40	1528.8	385.30	4.1786	992.22	0.44240	0.43119
50	1542.5	457.60	4.1807	988.04	0.44174	0.42536
60	1550.9	523.07	4.1844	983.20	0.44496	0.42281
70	1554.7	583.74	4.1896	977.76	0.45161	0.42307
80	1554.4	641.11	4.1964	971.79	0.46143	0.42584
90	1550.4	696.24	4.2051	965.31	0.47430	0.43093
100	1543.2	750.30	4.2160	958.35	0.49018	0.43819

$$\kappa_s = \frac{1}{\rho c^2}$$

ρ: Densidad del medio

c: Velocidad de la onda en el medio



Prof. Mohamed Khayet Souhaimi

Facultad de Ciencias Físicas (UCM)

Grado en Física y Doble Grado en Matemáticas y Física

⇒Aplicando la relación triangular:

$$\left(\frac{\partial p}{\partial V}\right)_T \left(\frac{\partial V}{\partial T}\right)_p \left(\frac{\partial T}{\partial p}\right)_V = -1$$

$$\left(-\frac{1}{\kappa_T V}\right)\left(\frac{1}{\beta p}\right)(\alpha V) = -1$$

$$\alpha = p \beta \kappa_T$$

 $\alpha = p \beta \kappa_T$ Expresión que permite determinar el coeficiente β

* Aplicación al cálculo del trabajo en sistemas líquidos o sólidos

$$\frac{dV}{V} = \frac{1}{V} \left(\frac{\partial V}{\partial p} \right)_{T} dp + \frac{1}{V} \left(\frac{\partial V}{\partial T} \right)_{p} dT = -\kappa_{T} dp + \alpha dT$$

$$\delta W = -pdV = pV \left(\kappa_{T} dP - \alpha dT \right)$$

* Si
$$T = Cste. \rightarrow \delta W = pV\kappa_T dP$$

$$W = \frac{V\kappa_T}{2} \left(p_2^2 - p_1^2 \right)$$

 \leftrightarrow Si V y κ_T Cstes. en un intervalo de presiones no es excesivamente grande \rightarrow

* Si
$$p = C$$
ste. $\rightarrow \delta W = -\alpha p V dT$ \rightarrow Si V y α son insensibles a variaciones pequeñas de $T \rightarrow W = p V \alpha (T_1 - T_2)$

→ Ecuación de estado de sólidos y líquidos:

- Teniendo en cuenta $v=1/\rho$:

$$\frac{dV}{V} = \frac{dv}{v} = -\frac{d\rho}{\rho}$$

$$\frac{dV}{V} = -\kappa_T dp + \alpha \ dT \to \frac{d\rho}{\rho} = \kappa_T dp - \alpha \ dT$$

$$\frac{V_2}{V_1} = \exp\left(\int_{T_1}^{T_2} \alpha \ dT - \int_{p_1}^{p_2} \kappa_T dp\right)$$

- Para muchos sólidos y líquidos los valores de α y κ_T son tan pequeños que pueden considerarse como nulos $\Rightarrow V_2 = V_1$ (Sustancia incompresible)

- Suponer constantes
$$\alpha y \kappa_T$$
:
$$\frac{V_2}{V_1} \approx \exp[\alpha (T_2 - T_1) - \kappa_T (p_2 - p_1)]$$

Si
$$\left[\alpha(T_2 - T_1) - \kappa_T(p_2 - p_1)\right] << 1 \Rightarrow \frac{V_2}{V_1} \approx 1 + \alpha(T_2 - T_1) - \kappa_T(p_2 - p_1)$$

→ Que puede considerarse como una ecuación de estado aproximada para sólidos y líquidos

* Determinada sustancia tiene los siguientes coeficientes de dilatación térmica y de compresiblidad isotérmica.

$$\alpha = \frac{aT^3}{V} \qquad \kappa_T = \frac{b}{V}$$

siendo a y b constantes.

Hallar la ecuación de estado que relaciona P, V y T.

* El coeficiente de dilatación térmica de cierto gas vale $\alpha = \frac{1}{T}$ y su coeficiente de compresibilidad isotérmica tiene la forma: $\kappa_T = \frac{A + Bp^2}{p(A - Bp^2)}$

siendo A y B dos constantes. Determinar la ecuación de estado del gas.

* La constante dieléctrica relativa del agua varía con la temperatura absoluta

de la forma:

$$\varepsilon_r = a - b T$$

donde a y b son constantes.

Establecer una ecuación de estado para el agua líquida sometida al campo eléctrico.

Nota: La susceptibilidad dieléctrica cumple la siguiente ecuación:

$$\chi_d = \left(\frac{\partial P}{\partial E}\right)_T = \varepsilon_0 (\varepsilon_r - 1)$$

* El coeficiente de dilatación térmica de un gas vale: $\alpha = \frac{4T^3}{T^4 - \theta^4}$ donde θ es una constante, y el coeficiente de compresibilidad: $\kappa_T = \frac{1}{p}$

Hallar la ecuación de estado del gas.