Matemática Discreta I

Tema 3. Aritmética modular

Luis Magdalena Layos luis.magdalena@upm.es

Departamento de Matemática Aplicada a las TIC E.T.S. Ingenieros Informáticos Universidad Politécnica de Madrid

Grado en Ciencia de Datos e Inteligencia Artificial Grado en Matemáticas e Informática Curso 2020/21

Contenidos

- Congruencias enteras
- **2** Aritmética en \mathbb{Z}_m
- 3 Criterios de divisibilidad
- 4 Función de Euler
- **5** Ecuaciones en congruencias
- 6 Sistemas de congruencias

Congruencias enteras

Definición

Dados $m \in \mathbb{N}$ y $a,b \in \mathbb{Z}$, se dice que \mathbf{a} es congruente con \mathbf{b} módulo m si y sólo si $m \mid (a-b)$. Se denota por $a \equiv b \pmod{m}$. Denominamos a m módulo de la congruencia.

Ejemplos

Por ejemplo $83 \equiv 2 \pmod{9}$, ya que $9 \mid 83 - 2 = 81$.

De igual forma $59 \equiv 4 \pmod{5}$ puesto que $5 \mid 59 - 4 = 55$.

Proposición

La relación de congruencia módulo m es una relación de equivalencia para todo $m \in \mathbb{N}$:

- Reflexiva: $\forall a \in \mathbb{Z}, a \equiv a \pmod{m}$ ya que $m \mid (a a) = 0$.
- Simétrica: $\forall a, b \in \mathbb{Z}, a \equiv b \pmod{m} \Leftrightarrow b \equiv a \pmod{m}$, ya que $m \mid (a b) \Leftrightarrow m \mid (b a)$.
- Transitiva: $\forall a,b,c \in \mathbb{Z}$, si $a \equiv b \pmod{m}$ y $b \equiv c \pmod{m}$, entonces $a \equiv c \pmod{m}$. $a \equiv b \pmod{m} \Rightarrow m \mid (a-b)$ $b \equiv c \pmod{m} \Rightarrow m \mid (b-c)$ $\Rightarrow m \mid (a-b+b-c) = (a-c) \Rightarrow a \equiv c \pmod{m}$

Congruencias enteras

Proposición

Dado $m \in \mathbb{N}$ se cumple que:

- $a \equiv b \pmod{m} \iff \exists q, q', r \in \mathbb{Z} \mid a = m \cdot q + r, b = m \cdot q' + r, \text{ con } 0 \le r < m.$
- Para todo $a \in \mathbb{Z}$ existe $r \in \{0, 1, \dots, m-1\}$ tal que $a \equiv r \pmod{m}$.

Definiciones

- Se denomina Clase de congruencias módulo m al conjunto $[r]_m = \{a \in \mathbb{Z} \mid a \equiv r \pmod{m}\} = \{a \in \mathbb{Z} \mid \exists q \in \mathbb{Z} \text{ con } a = m \cdot q + r\}.$
- Al resto de la división entera con divisor m se le denomina **residuo** módulo m.
- Denominamos conjunto de mínimos residuos no negativos módulo m al conjunto de las clases de congruencias módulo m, y lo representamos por \mathbb{Z}_m :

$$\mathbb{Z}_m = \{[0]_m, [1]_m, \dots [m-1]_m\}.$$

Proposición

 \mathbb{Z}_m es el conjunto cociente de \mathbb{Z} por la relación de congruencia módulo m.

Compatibilidad con suma y producto en $\ensuremath{\mathbb{Z}}$

Teorema

La relación de congruencia es compatible con la suma y el producto en \mathbb{Z} . Sean $m \in \mathbb{N}$ y $a, b, c, d \in \mathbb{Z}$, con $a \equiv b \pmod{m}$ y $c \equiv d \pmod{m}$, se cumple que:

- $(a+c) \equiv (b+d) \pmod{m}$.
- $(a \cdot c) \equiv (b \cdot d) \pmod{m}$.
- $(a^c) \equiv (b^c) \pmod{m}$.

Demostración.

Al ser $a\equiv b\pmod m$ y $c\equiv d\pmod m$, $a=b+k_1m$ y $c=d+k_2m$, con $k_1,k_2\in\mathbb{Z}$. Por tanto $(a+c)=(b+d)+(k_1+k_2)m$, con $k_1+k_2\in\mathbb{Z}$, y $(a+c)\equiv (b+d)\pmod m$. Por otro lado $ac=bd+(bk_2+dk_1+k_1k_2m)m$ con $(bk_2+dk_1+k_1k_2m)\in\mathbb{Z}$, por lo que $(a\cdot c)\equiv (b\cdot d)\pmod m$.

Finalmente $(a^c) = (b+k_1m)^c = \binom{c}{0}b^c + \binom{c}{1}b^{c-1}(k_1m) + \ldots + \binom{c}{c}(k_1m)^c$, siendo múltiplos de m todos los sumandos salvo el primero, con lo que $(a^c) \equiv (b^c) \pmod{m}$. Observación: En general no se cumple que $(a^c) \equiv (b^d) \pmod{m}$.

Compatibilidad con suma y producto en $\ensuremath{\mathbb{Z}}$

Proposición

Sean $m \in \mathbb{N}$ y $a_i, b_i \in \mathbb{Z} \forall i \in \{1, 2, 3, \dots, k\}$. Si $a_i \equiv b_i \pmod{m} \forall i \in \{1, 2, 3, \dots, k\}$, entonces:

$$\bullet \sum_{i=1}^k a_i \equiv \sum_{i=1}^k b_i \pmod{m}.$$

$$\bullet \prod_{i=1}^k a_i \equiv \prod_{i=1}^k b_i \pmod{m}.$$

6/36

Observación: El resultado previo nos indica que el resto de la suma es congruente con la suma de restos y el resto del producto es congruente con el producto de restos.

Ejemplos

- Como $1234567 \equiv 7 \pmod{10}$ y $90213 \equiv 3 \pmod{10}$, se tiene que $1234567 \cdot 90213 \equiv 21 \equiv 1 \pmod{10}$.
- ullet El resto al dividir 6^{123} entre 5 es igual al resto al dividir 1^{123} entre 5, que es obviamente 1.
- El resto al dividir 7^{123} entre 5 es igual al resto al dividir 2^{123} entre 5, que no es inmediato. Pero observamos que $2^4 \equiv 1 \pmod 5$ y por tanto $2^{123} = 2^{4 \cdot 30 + 3} = (2^4)^{30} \cdot 2^3 \equiv 2^3 \equiv 3 \pmod 5$.

Definición

En \mathbb{Z}_m definimos dos operaciones binarias internas:

- La suma (+) dada por: $[a]_m + [b]_m = [a+b]_m$.
- El producto (·) dado por: $[a]_m \cdot [b]_m = [a \cdot b]_m$.

Propiedades: En $(\mathbb{Z}_m, +, \cdot)$ se verifican las siguientes propiedades:

- Asociativa: $[a]_m + ([b]_m + [c]_m) = ([a]_m + [b]_m) + [c]_m$, $[a]_m ([b]_m [c]_m) = ([a]_m [b]_m)[c]_m$ para cualesquiera $a,b,c \in \mathbb{Z}$.
- Conmutativa: $[a]_m + [b]_m = [b]_m + [a]_m$, $[a]_m [b]_m = [b]_m [a]_m$, para cualesquiera $a,b \in \mathbb{Z}$.
- Elemento neutro: Existen $[0]_m$ y $[1]_m$ $| \in \mathbb{Z}_m$ tales que $[a]_m + [0]_m = [a]_m$, y $[a]_m[1]_m = [a]_m$, para todo $a \in \mathbb{Z}$.
- Elemento opuesto: Para todo $a \in \mathbb{Z}$ existe $[-a]_m \in \mathbb{Z}_m$ tal que $[a]_m + [-a]_m = [0]_m$.
- Distributiva: $[a]_m([b]_m+[c]_m)=[a]_m[b]_m+[a]_m[c]_m$, para cualesquiera $a,b,c\in\mathbb{Z}$.

Ejemplo

Construir las tablas de la suma y el producto en \mathbb{Z}_5 y \mathbb{Z}_6

\mathbb{Z}_5 y	\mathbb{Z}_6 .							
\mathbb{Z}_5 .	•	0	1	2	3	4		
	0	0	0	0	0	0		
	1	0	1	2	3	4		
	2	0	2	4	1	3		
	3	0	3	1	4	2		
	4	0	4	3	2	1		
		۱ ۵	_	_	_			
		0	1	2	3	4	5	
	0	0	1	0	3	0	5	_
	0							_
\mathbb{Z}_6 .		0	0	0	0	0	0	
\mathbb{Z}_6 .	1	0 0	0 1	0 2	0	0 4	0 5	_
\mathbb{Z}_6 .	1 2	0 0 0	0 1 2	0 2 4	0 3 0	0 4 2	0 5 4	_

Observación: En general no se cumple la propiedad cancelativa, por ejemplo en \mathbb{Z}_6 $[2]_6 \times [1]_6 = [2]_6 \times [4]_6$ pero $[1]_6 \neq [4]_6$.

Proposición

Sea $c \in \mathbb{Z}$ con $[c]_m \neq [0]_m$, si $ac \equiv bc \pmod m$ entonces $a \equiv b \pmod \frac{m}{\gcd(m,c)}$, o lo que es equivalente, si $[a]_m[c]_m = [b]_m[c]_m$ entonces $[a]_{\frac{m}{\gcd(m,c)}} = [b]_{\frac{m}{\gcd(m,c)}}$.

Corolario.

- **①** Si mcd(m, c) = 1 y $[c]_m \neq [0]_m$, entonces: $[a]_m[c]_m = [b]_m[c]_m \Rightarrow [a]_m = [b]_m$.
- $oldsymbol{2}$ Si p es primo, \mathbb{Z}_p tiene la propiedad cancelativa del producto.

Ejemplo

$$[10]_{14}[x]_{14} = [6]_{14} \Rightarrow [2]_{14}[5]_{14}[x]_{14} = [2]_{14}[3]_{14} \xrightarrow{\operatorname{mcd}(14,2)=2} [5]_{7}[x]_{7} = [3]_{7} = [10]_{7} \Rightarrow [5]_{7}[x]_{7} = [5]_{7}[2]_{7} \xrightarrow{\operatorname{mcd}(7,5)=1} [x]_{7} = [2]_{7}.$$

Si quisieramos expresar ahora la solución en \mathbb{Z}_{14} debemos darnos cuenta de que $2 \equiv 9 \pmod{7}$, pero $2 \not\equiv 9 \pmod{14}$, por lo que habría dos soluciones en \mathbb{Z}_{14} : $[x]_{14} = [2]_{14}$, $[9]_{14}$.

Definiciones

- Se denominan **divisores de cero** en \mathbb{Z}_m a los elementos $[a]_m, [b]_m$ tales que $[a]_m \neq [0]_m \neq [b]_m$ y sin embargo $[a]_m \cdot [b]_m = [0]_m$.
- Se denominan **elementos inversibles** de \mathbb{Z}_m a los elementos $[a]_m$ para los que existe un $[b]_m$ tal que $[a]_m \cdot [b]_m = [1]_m$.

Proposición

- El conjunto \mathbb{Z}_m tendrá divisores de cero si y solo si m es un número compuesto (m no es primo).
- Un elemento $[a]_m \in \mathbb{Z}_m$ será inversible si y solo si mcd(a, m) = 1 (a y m son coprimos).
- Igualmente podemos decir que un elemento $[a]_m \in \mathbb{Z}_m$ será inversible si y solo si existen $b,k \in \mathbb{Z}$ tales que $a \cdot b + k \cdot m = 1$, y podríamos calcular b por el algoritmo de Euclides.
- Si m es primo, todos los elementos de \mathbb{Z}_m son inversibles.

Definición

Si $[a]_m$ es inversible en \mathbb{Z}_m y $[a]_m \cdot [b]_m = [1]_m$, diremos que $[b]_m$ es el inverso de $[a]_m$ en \mathbb{Z}_m y lo denotamos por $[b]_m = [a]_m^{-1}$.

Criterios de divisibilidad

Observación: Dado $n=(a_p\dots a_0)_{10}\in\mathbb{N}$ (representado en base 10) tenemos que

$$n=\sum_{i=0}^p a_i 10^i$$
, y a partir de las propiedades de la aritmética modular, $[n]_m=\sum_{i=0}^p [a_i]_m[10^i]_m$.

Ejemplos

Como
$$100 \equiv 10 \equiv 1 \pmod{3}, 832 \equiv (8 \cdot 1 + 3 \cdot 1 + 2) \equiv 1 \pmod{3}$$
.

$$\mathsf{Como}\ 100 \equiv 10 \equiv 0\ (\mathrm{m\acute{o}d}\ 5), 832 \equiv (8 \cdot 0 + 3 \cdot 0 + 2) \equiv 2\ (\mathrm{m\acute{o}d}\ 5).$$

Además sabemos que si x es divisible por m, $x\equiv 0\pmod m$. Por tanto x será divisible por m si y solo si $\sum_{i=0}^p [a_i]_m [10^i]_m = [0]_m$.

Ejemplos

Como $100 \equiv 4 \pmod 8$ y $10 \equiv 2 \pmod 8$, $832 \equiv (8 \cdot 4 + 3 \cdot 2 + 2) \equiv 0 \pmod 8$. Por tanto 832 es divisible por 8.

Criterios de divisibilidad

Proposición

Sea $n=(a_p\dots a_0)_{10}\in\mathbb{N}$ un número natural representado en base 10.

- $oldsymbol{0}$ $10^i \equiv 0 \pmod{2} \forall i > 0$, $n \equiv a_0 \pmod{2}$, luego n es divisible por $2 \Leftrightarrow a_0$ lo es.
- 10ⁱ $\equiv 0 \pmod{4} \forall i > 1$, $n \equiv 10a_1 + a_0 \equiv 2a_1 + a_0 \pmod{4}$, luego n es divisible por 4 $\Leftrightarrow 2a_1 + a_0$ lo es. Otra opción sería comprobar si $(a_1a_0)_{10}$ es divisible por 4.
- ① $10^i \equiv 0 \pmod{5} \forall i > 0$, $n \equiv a_0 \pmod{5}$, luego n es divisible por $5 \Leftrightarrow a_0$ lo es.
- 10 $10^i \equiv 1 \pmod{9} \forall i \geq 0, n \equiv \sum_{i=0}^p a_i \pmod{9}$, luego n es divisible por $9 \Leftrightarrow \sum_{i=0}^p a_i$ lo es.
- ① $10 \equiv -1 \pmod{11}$, $10^i \equiv -1^i \pmod{11}$, y por tanto $n \equiv \sum_{i=0}^{p} (-1)^i a_i \pmod{11}$, con lo

que n es divisible por $11 \Leftrightarrow \sum_{i=0}^{p} (-1)^i a_i$ lo es.

Prueba del 9 para la multiplicación

Teorema

Sean $x,y,z\in\mathbb{N}$. Entonces $xy=z\Leftrightarrow\theta(x)\theta(y)\equiv\theta(z)\pmod{9}$, donde $\theta((a_p\dots a_0)_{10})=a_p+a_{p-1}+\dots+a_1+a_0$.

Ejemplo

Como $\theta(12)\theta(12)=9\not\equiv\theta(145)\pmod{9}$ se tiene que $12\cdot12\not=145$. Por otra parte, como $\theta(12)\theta(12)=9\equiv\theta(144)\pmod{9}$ es posible que $12\cdot12=144$ aunque en principio no tiene porque ser así puesto que también se tiene que $\theta(12)\theta(12)=9\equiv\theta(135)\pmod{9}$.

Observación: La prueba del 9 también se puede utilizar para la recuperación de datos perdidos. Por ejemplo, un dígito perdido en $53928719937 \cdot 376648 = 20312144X06831176$. Como $\theta(53928719937) \equiv 0 \pmod 9$ y $\theta(376648) \equiv 7 \pmod 9$ sabemos que deberá ser $\theta(20312144X06831176) \equiv 0 \pmod 9$. Por tanto $49 + X \equiv 0 \pmod 9$, o lo que es los mismo, $4 + X \equiv 0 \pmod 9$, y como $0 \le X \le 9$, solo puede ser X = 5.

Observación: El proceso de corrección o recuperación de información se puede hacer de forma general con cualquier congruencia. Por tanto al comprobar que $\theta(12)\theta(12) = 9 \not\equiv \theta(145) \pmod{9}$ y ver que tenemos dos opciones de corrección (144 y 135), bastaría ver que $[12]_{10} \cdot [12]_{10} = [144]_{10}$ mientras que $[12]_{10} \cdot [12]_{10} \neq [135]_{10}$.

Definición

Denominamos **conjunto de Unidades** de \mathbb{Z}_m (representado por U_m) al conjunto de elementos inversibles de \mathbb{Z}_m .

$$U_m = \{[a]_m \in \mathbb{Z}_m \mid [a]_m \text{ es inversible}\} = \{[a]_m \in \mathbb{Z}_m \mid \operatorname{mcd}(a, m) = 1\}$$

Ejemplos

$$\begin{array}{ll} U_{10} = \{[1]_{10}, [3]_{10}, [7]_{10}, [9]_{10}\} & \text{con } [1]_{10}^{-1} = [1]_{10}, [3]_{10}^{-1} = [7]_{10}, [7]_{10}^{-1} = [3]_{10}, [9]_{10}^{-1} = [9]_{10}, \\ U_{5} = \{[1]_{5}, [2]_{5}, [3]_{5}, [4]_{5}\} & \text{con } [1]_{5}^{-1} = [1]_{5}, [2]_{5}^{-1} = [3]_{5}, [3]_{5}^{-1} = [2]_{5}, [4]_{5}^{-1} = [4]_{5}. \\ \text{En general, si } m \text{ es primo } U_{m} = \{[1], [2], [3], \ldots, [m-1]_{m}\}. \end{array}$$

Propiedades: En \mathbb{Z}_m se verifican las siguientes propiedades:

- Si $[a]_m, [b]_m \in U_m$ entonces $[a]_m[b]_m \in U_m$ y $[a]_m^{-1} \in U_m$.
- Si $[a]_m \in U_m$ entonces $[a]_m \cdot U_m = \{[a]_m \cdot [b]_m \mid [b]_m \in U_m\} = U_m$.

Proposición

Si m es primo los únicos elementos que coinciden con su inverso son $[1]_m$ y $[m-1]_m$. Además, en este caso $|U_m|=m-1$.

Ejemplo

Hallamos los inversos en \mathbb{Z}_{13} .

Vemos en primer lugar que al ser 13 primo, $|U_{13}| = 12$.

$$U_{13} = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}.$$

Sabemos que $[1]_{13}^{-1} = [1]_{13}$ y que $[12]_{13}^{-1} = [12]_{13}$.

Por otro lado $7 \cdot 2 = -7 \cdot (-2) = 14 \equiv 1 \pmod{13}$, con lo que $[7]_{13}^{-1} = [2]_{13}$, $[2]_{13}^{-1} = [7]_{13}$,

 $[11]_{13}^{-1} = [6]_{13}$ (ya que $[-2]_{13}^{-1} = [-7]_{13}$) y $[6]_{13}^{-1} = [11]_{13}$.

Además $3 \cdot 9 = -3 \cdot (-9) = 27 \equiv 1 \pmod{13}$, con lo que $[3]_{13}^{-1} = [9]_{13}$, $[9]_{13}^{-1} = [3]_{13}$,

 $[10]_{13}^{-1} = [4]_{13}$ (ya que $[-3]_{13}^{-1} = [-9]_{13}$) y $[4]_{13}^{-1} = [10]_{13}$.

Y solo nos quedan por emparejar 5 y 8, pero $5 \cdot 8 = 40 \equiv 1 \pmod{13}$, siendo por tanto

 $[5]_{13}^{-1} = [8]_{13}, [8]_{13}^{-1} = [5]_{13}.$

Observación: Si m no es primo, puede haber elementos distintos de $[1]_m$ y $[m-1]_m$ que coincidan con su inverso (autoinversos). Además, $|U_m| < m-1$ ya que no todos los elementos serán inversibles.

Ejemplo

Hallamos ahora los inversos en \mathbb{Z}_{15} .

Al no ser 15 un número primo no todos los elementos de \mathbb{Z}_{15} van a tener inverso,

$$U_{15} = \{1, 2, 4, 7, 8, 11, 13, 14\}, \text{ y sabemos que } [1]_{15}^{-1} = [1]_{15} \text{ y } [14]_{15}^{-1} = [14]_{15}.$$

Como
$$8 \cdot 2 = -8 \cdot (-2) = 16 \equiv 1 \pmod{15}$$
, tenemos que $[8]_{15}^{-1} = [2]_{15}$, $[2]_{15}^{-1} = [8]_{15}$,

$$[13]_{15}^{-1} = [7]_{15} \text{ y } [7]_{15}^{-1} = [13]_{15}.$$

Nos quedan por emparejar 4 y 11, pero $4 \cdot 11 = 44 \equiv -1 \pmod{15}$, con lo que no son inversos.

Sin embargo
$$4 \cdot 4 = -4 \cdot (-4) = 16 \equiv 1 \pmod{15}$$
, con lo que $[4]_{15}^{-1} = [4]_{15}$ y $[11]_{15}^{-1} = [11]_{15}$.

Ejemplo

En cambio en \mathbb{Z}_{14} solamente 1 y 13 coinciden con su inverso. $U_{14} = \{1, 3, 5, 9, 11, 13\}$.

Sabemos que $[1]_{14}^{-1} = [1]_{14}$ y $[13]_{14}^{-1} = [13]_{14}$.

Como $3 \cdot 5 = -3 \cdot (-5) = 15 \equiv 1 \pmod{14}$, tenemos que $[3]_{14}^{-1} = [5]_{14}$, $[5]_{14}^{-1} = [3]_{14}$, $[11]_{14}^{-1} = [9]_{14}$ y $[9]_{14}^{-1} = [11]_{14}$. Y todos quedan emparejados.

L. Magdalena (DMATIC) Matemática Discreta I GCDIA/GMI - 2020/21

Proposición (Teorema de Wilson)

Si p es primo, entonces

$$(p-1)! \equiv (p-1) \pmod{p}$$

Ejemplo

Tomamos p = 11.

 $(10)! = 10 \cdot 9 \cdot 8 \cdot 7 \cdot 6 \cdot 5 \cdot 4 \cdot 3 \cdot 2 \cdot 1$ y por las propiedades vistas anteriormente sabemos que los únicos elementos que coinciden con su inverso son $[10]_{11}^{-1} = [10]_{11}$ y $[1]_{11}^{-1} = [1]_{11}$.

El resto de elementos se agrupan de dos en dos, siendo mutuamente inversos. $[2]_{11}^{-1} = [6]_{11}$, $[6]_{11}^{-1} = [2]_{11}$, $[3]_{11}^{-1} = [4]_{11}$, $[4]_{11}^{-1} = [3]_{11}$, $[5]_{11}^{-1} = [9]_{11}$, $[9]_{11}^{-1} = [5]_{11}$, $[7]_{11}^{-1} = [8]_{11}$,

$$[8]_{11}^{-1} = [7]_{11}$$
.

 $\begin{array}{l} \text{Por lo tanto } [10!]_{11} = [10]_{11} \cdot [9]_{11} \cdot [8]_{11} \cdot [7]_{11} \cdot [6]_{11} \cdot [5]_{11} \cdot [4]_{11} \cdot [3]_{11} \cdot [2]_{11} \cdot [1]_{11} = \\ [10]_{11} \cdot ([9]_{11} \cdot [5]_{11}) \cdot ([8]_{11} \cdot [7]_{11}) \cdot ([6]_{11} \cdot [2]_{11}) \cdot ([4]_{11} \cdot [3]_{11}) \cdot [1]_{11} = \\ [10]_{11} \cdot [1]_{11} \cdot [1]_{11} \cdot [1]_{11} \cdot [1]_{11} \cdot [1]_{11} = [10]_{11}. \end{array}$

Y en consecuencia $[10!]_{11} = [10]_{11}$.

Cálculo de Inversos

Ejemplo

El inverso de $[5]_{13}$ es $[8]_{13}$, porque $5 \cdot 8 = 40 = 3 \cdot 13 + 1$.

El inverso de $[7]_{16}$ es $[7]_{16}$, porque $7 \cdot 7 = 49 = 3 \cdot 16 + 1$.

Proposición

Para calcular el inverso de a en \mathbb{Z}_m podemos proceder de la siguiente forma:

- Comprobamos en primer lugar que a es inversible en \mathbb{Z}_m , para ello se debe cumplir que $\operatorname{mcd}(a,m)=1$.
- Si $\operatorname{mcd}(a,m)=1$ sabemos que existen dos enteros x,y tales que $a\cdot x+m\cdot y=1$ y por tanto $(a\cdot x)\equiv 1\pmod m$, o lo que es lo mismo, $[a]_m\cdot [x]_m=[1]_m$. En definitiva $[a]_m^{-1}=[x]_m$.
- Por tanto, para calcular el inverso de a en \mathbb{Z}_m , bastará con resolver la ecuación diofántica $a \cdot x + m \cdot y = 1$ (una vez comprobado que $\operatorname{mcd}(a, m) = 1$).

Cálculo de Inversos

Ejemplo

Para ver si $[777]_{1009}$ tiene inverso, calculamos primero mcd(777,1009) mediante el algoritmo de Euclides:

$$1009 = 1 \cdot 777 + 232,$$
 $777 = 3 \cdot 232 + 81,$ $232 = 2 \cdot 81 + 70,$ $81 = 70 + 11,$ $70 = 6 \cdot 11 + 4,$ $11 = 2 \cdot 4 + 3,$ $4 = 1 \cdot 3 + 1$

por tanto, mcd(1009, 777) = 1 y $[777]_{1009}$ tiene inverso.

Resolvemos a continuación la ecuación diofántica $777 \cdot x + 1009 \cdot y = 1$

$$1 = 4 - 3 = 4 - (11 - 2 \cdot 4) = 3 \cdot 4 - 11 = 3 \cdot (70 - 6 \cdot 11) - 11 = 3 \cdot 70 - 19 \cdot 11$$

$$= 3 \cdot 70 - 19 \cdot (81 - 70) = 22 \cdot 70 - 19 \cdot 81 = 22 \cdot (232 - 2 \cdot 81) - 19 \cdot 81$$

$$= 22 \cdot 232 - 63 \cdot 81 = 22 \cdot 232 - 63 \cdot (777 - 3 \cdot 232) = 211 \cdot 232 - 63 \cdot 777$$

$$= 211 \cdot (1009 - 777) - 63 \cdot 777 = 211 \cdot 1009 - 274 \cdot 777.$$

siendo
$$x=-274$$
 e $y=211$. Así, $(-274)\cdot 777=1+211\cdot 1009$. Luego $[777]_{1009}^{-1}=[-274]_{1009}=[735]_{1009}$.

La función de Euler

Definición

Se define la función de Euler (representada por ϕ) como la función $\phi: \mathbb{N} \to \mathbb{N}$ que a cada n le hace corresponder el número de naturales, menores que n, que son primos con n.

$$\phi(n) = |\{k \in \mathbb{N} \mid k < n \text{ y } mcd(k, n) = 1\}|.$$

Propiedades:

- Si p es primo entonces $\phi(p^r) = p^r p^{r-1}$.
- Si mcd(a, b) = 1 entonces $\phi(ab) = \phi(a)\phi(b)$.
- Si $n = p_1^{r_1} p_2^{r_2} \cdots p_k^{r_k}$ (con p_i números primos distintos) entonces

$$\phi(n) = n\left(1 - \frac{1}{p_1}\right)\left(1 - \frac{1}{p_2}\right)\cdots\left(1 - \frac{1}{p_n}\right).$$

Ejemplos

$$\phi(1) = 1, \phi(2) = 1, \phi(3) = 2, \phi(4) = 2, \phi(5) = 4, \phi(6) = 2, \phi(7) = 6, \phi(8) = 4, \phi(9) = 6, \dots$$
$$\phi(3500) = \phi(2^2 \cdot 5^3 \cdot 7) = \phi(2^2) \cdot \phi(5^3) \cdot \phi(7) = (2^2 - 2) \cdot (5^3 - 5^2) \cdot 6 = 2 \cdot 100 \cdot 6 = 1200.$$

Teoremas de Euler y Fermat

Teorema (Teorema de Euler)

Si $[a]_m \in U_m$ entonces $[a]_m^{\phi(m)} = [1]_m$, o lo que es lo mismo, si mcd(a, m) = 1 entonces $a^{\phi(m)} \equiv 1 \pmod{m}$.

Demostración.

Supongamos que $U_m = \{[a_1]_m, [a_2]_m, \dots, [a_r]_m\}$ (por tanto $\phi(m) = |U_m| = r$). Sea $[a]_m \in U_m$. Entonces $[a]_m U_m = \{[a]_m [a_1]_m, [a]_m [a_2]_m, \dots, [a]_m [a_r]_m\} = U_m$ y por tanto $[a_1]_m [a_2]_m \cdots [a_r]_m = ([a]_m [a_1]_m)([a]_m [a_2]_m) \cdots ([a]_m [a_r]_m) = [a]_m^r [a_1]_m [a_2]_m \cdots [a_r]_m$ en \mathbb{Z}_m .

Además, como $[a_1]_m[a_2]_m\cdots[a_r]_m$ son inversibles, podemos multiplicar por su inverso y obtenemos que $a^r\equiv 1\pmod{m}$.

Teoremas de Euler y Fermat

Teorema (Teorema de Fermat)

Si p es primo y no divide a a, entonces $a^{p-1} \equiv 1 \pmod{p}$. En particular $2^{p-1} \equiv 1 \pmod{p}$ para todo número primo $p \geq 2$.

Demostración.

Si p es primo y no divide a a entonces $\operatorname{mcd}(a,p)=1$. Por otra parte, como p es primo se tiene que $\phi(p)=p-1$. Por tanto $a^{p-1}=a^{\phi(p)}\equiv 1\pmod{p}$.

Observación: No es necesario que p sea primo para que $a^{p-1} \equiv 1 \pmod{p}$, basta considerar $341 = 11 \cdot 31$ que verifica que $2^{340} \equiv 1 \pmod{p}$.

Ejemplo

Calculamos el resto de 125^{4577} entre 13.

Vemos en primer lugar que $125 \equiv 8 \pmod{13}$, por tanto $125^{4577} \equiv 8^{4577} \pmod{13}$.

Además, como 13 es primo y 8 no es múltiplo de 13, sabemos que $8^{12} \equiv 1 \pmod{13}$.

Por otro lado $4577 = 12 \times 381 + 5$, con lo que $8^{4577} = (8^{12})^{381} \cdot 8^5 \equiv 1^{381} 8^5 \equiv 8^5 \pmod{13}$.

Además, $8^2 \equiv (-1) \pmod{13}$ y por tanto $8^2 \times 8^2 \equiv 1 \pmod{13}$, y $8^5 \equiv 8 \pmod{13}$.

En definitiva $125^{4577} \equiv 8 \pmod{13}$.

Cálculo de residuos de potencias

Proposición

Dados $a,b,m\in\mathbb{Z}$, sabemos que si $a\equiv\alpha\pmod m$, entonces $a^b\equiv\alpha^b\pmod m$.

Por otro lado, si $\operatorname{mcd}(\alpha, m) = 1$ sabemos que $\alpha^{\phi(m)} \equiv 1 \pmod{m}$.

Por tanto, si $a \equiv \alpha \pmod{m}$, $\operatorname{mcd}(\alpha, m) = 1$ y $b \equiv \beta \pmod{\phi(m)}$, entonces $a^b \equiv \alpha^\beta \pmod{m}$.

Ejemplo

Calculamos el resto de dividir 261^{142} entre 50, por tanto estamos buscando $[261]^{142}$ en \mathbb{Z}_{50} .

En primer lugar vemos que $261 \equiv 11 \pmod{50}$. Además se cumple que mcd(50,11) = 1 y por tanto $11^{\phi(50)} \equiv 1 \pmod{50}$.

Calculamos ahora $\phi(50)$: $\phi(50) = \phi(2 \cdot 5^2) = \phi(2) \cdot \phi(5^2) = 1 \cdot (5^2 - 5) = 20$, y vemos que $142 \equiv 2 \pmod{20}$.

Agrupando ahora todos los resultados,

$$[261]^{142} = [11]^{142} = [11]^{7 \cdot 20 + 2} = ([11]^{20})^7 \cdot [11]^2 = [1] \cdot [121] = [21] \text{ en } \mathbb{Z}_{50}.$$

Definición

Se denomina ecuación en congruencias a cualquier expresión de la forma:

$$a \cdot x \equiv b \pmod{m}$$
, con $a, b, x, m \in \mathbb{Z}(m > 1)$.

La ecuación en congruencias $a\cdot x\equiv b\pmod m$ tiene solución en x si y solo si existen $x,y\in\mathbb{Z}$ tales que $a\cdot x=b+m\cdot y$, y esto es equivalente a que la ecuación diofántica $a\cdot x+m\cdot y=b$ tenga solución.

Teorema

La ecuación en congruencias $a\cdot x\equiv b\pmod m$ tiene solución en x si y solo si $d=\mathrm{mcd}(a,m)\mid b$ en cuyo caso tiene exactamente d soluciones distintas en \mathbb{Z}_m de la forma

$$x = x_1 + \frac{mt}{d}, t = 0, 1, 2, \dots, d - 1,$$

siendo x_1 una solución particular de la ecuación diofántica $a \cdot x + m \cdot y = b$.

Demostración.

Por el teorema de solución de ecuaciones diofánticas y la observación anterior, las únicas soluciones posibles son las de la forma $x=x_1+\frac{mt}{d}$ con $t\in\mathbb{Z}$.

Vamos a ver primero que cualquier solución de éstas es congruente en módulo m a una de las del enunciado. Por el teorema de la división se tiene que t=qd+r con $0 \le r < d$. Entonces $\frac{mt}{d}=qm+\frac{mr}{d}$ y por tanto $x_1+\frac{mt}{d}\equiv x_1+\frac{mr}{d}\pmod{m}$.

Veamos ahora que todas las soluciones del enunciado del teorema son distintas. Supongamos que existen $0 \le t_1 < t_2 \le d-1$ tales que $x_1 + \frac{mt_1}{d} \equiv x_1 + \frac{mt_2}{d} \pmod{m}$. Entonces

$$\left(x_1 + \frac{mt_1}{d}\right) - \left(x_1 + \frac{mt_2}{d}\right) = qm.$$

Luego $m(t_1-t_2)=qmd$ y por tanto $t_1-t_2=qd$ y $d\mid t_1-t_2$ con $0\leq t_1< t_2\leq d-1$, lo que es imposible, siendo por tanto todas las soluciones distintas.

Observación: Dada la ecuación en congruencias $a \cdot x \equiv b \pmod{m}$, si $\operatorname{mcd}(a, m) = 1$ ($a \neq m$ son coprimos), existirá $[a]_m^{-1}$ y se podrá obtener $[x]_m$ de forma directa ya que:

$$[a]_m \cdot [x]_m = [b]_m \Rightarrow [a]_m^{-1} \cdot [a]_m \cdot [x]_m = [a]_m^{-1} \cdot [b]_m \Rightarrow [x]_m = [a]_m^{-1} \cdot [b]_m.$$

Además, en este caso la solución será única.

Ejemplo

Resolvemos la ecuación $5x \equiv 2 \pmod{11}$.

En primer lugar vemos que mcd(5,11) = 1.

A continuación obtenemos $[5]_{11}^{-1} = [9]_{11}$ y por tanto $[x]_{11} = [9]_{11} \cdot [2]_{11} = [7]_{11}$.

Ejercicio

Resuelve la ecuación: 28x = 77 en \mathbb{Z}_{637} con $0 \le x < 637$.

Podemos abordar el problema de diversas formas:

- Una primera opción sería resolver directamente la ecuación diofántica 28x 637y = 77.
- También podemos simplificar la ecuación (dividir por 7), y resolver la ecuación diofántica 4x 91y = 11 (que generará exactamente las mismas soluciones que la anterior).
- Por último podemos considerar la ecuación en congruencias para resolverla utilizando inversos y la propiedad cancelativa.

En todo caso deberemos asegurarnos de que exista solución. Por tanto comprobamos que $mcd(637,28)=7\mid 77.$

La ecuación tendrá infinitas soluciones en \mathbb{Z} , que se van a corresponder con 7 soluciones en \mathbb{Z}_{637} .

Vamos a resolver la ecuación en congruencias:

$$[28]_{637}[x]_{637} = [77]_{637} \Rightarrow [7]_{637}[4]_{637}[x]_{637} = [7]_{637}[11]_{637}$$
, y como $mcd(637,7) = 7$, $[4]_{91}[x]_{91} = [11]_{91}$.

Ahora necesitamos calcular $[4]_{91}^{-1}$, o lo que es lo mismo, resolver 4x - 91y = 1.

$$91 = 4 \cdot 22 + 3$$
, $4 = 3 \cdot 1 + 1$ y por tanto, $1 = 4 - 3 = 4 - (91 - 4 \cdot 22) = 4 \cdot 23 - 91$, es decir $[4]_{91}^{-1} = [23]_{91}$.

Multiplicando ahora por el inverso que se ha calculado:

$$[23]_{91}[4]_{91}[x]_{91} = [23]_{91}[11]_{91} \Rightarrow [x]_{91} = [253]_{91} = [71]_{91}.$$

Y para obtener la solución en \mathbb{Z}_{637} , teniendo en cuenta que $\frac{637}{91}=7$, tenemos que generar las

7 soluciones en \mathbb{Z}_{637} , que son congruentes con 71 en \mathbb{Z}_{91} , por tanto $x=71+91\cdot k$, con $k\in\{0,1,2,3,4,5,6\}$.

Y considerando que de acuerdo con el enunciado, $0 \le x < 637$, estas serán todas las soluciones posibles. Por tanto, x podrá tomar los siguientes valores: 71,162,253,344,435,526,617.

L. Magdalena (DMATIC)

Definición

Se denomina sistema lineal de congruencias a un conjunto de ecuaciones en congruencias de la forma

$$\begin{cases} x \equiv c_1 \pmod{m_1} \\ x \equiv c_2 \pmod{m_2} \\ \vdots \\ x \equiv c_r \pmod{m_r} \end{cases}$$

con $x, c_i, m_j \in \mathbb{Z}$.

Teorema (Teorema Chino del Resto)

El sistema de congruencias

$$\begin{cases} x \equiv c_1 \pmod{m_1} \\ x \equiv c_2 \pmod{m_2} \\ \vdots \\ x \equiv c_r \pmod{m_r} \end{cases}$$

donde $mcd(m_i, m_j) = 1$ para todo $i \neq j$, tiene solución única en \mathbb{Z}_m con $m = m_1 m_2 \cdots m_r$.

Demostración.

Tomando
$$m=\prod_{j=1}^r m_j$$
 vemos como $\operatorname{mcd}\left(m_i,\frac{m}{m_i}\right)=1$ para todo $i\in\{1,2,\ldots,r\}$ (ya que $\operatorname{mcd}(m_i,m_j)=1\ \forall i\neq j$).

Como consecuencia de ello $\frac{m}{m_i}$ tendrá inverso en \mathbb{Z}_{m_i} , cumpliéndose también que $\frac{m}{m_i}\equiv 0$

 $(\bmod \ m_j) \ \forall i \neq j \ \text{ya que } m_j \ \text{divide a} \ \frac{m}{m_i}.$

En consecuencia vemos que $c_i \frac{m}{m_i} \left[\frac{m}{m_i} \right]_{m_i}^{-1} \equiv c_i \pmod{m_i}$ y que $c_i \frac{m}{m_i} \left[\frac{m}{m_i} \right]_{m_i}^{-1} \equiv 0$

 $\pmod{m_j} \text{ si } j \neq i.$

Si tomamos ahora $x_0 = \sum_{i=1}^r c_i \frac{m}{m_i} \left[\frac{m}{m_i} \right]_{m_i}^{-1}$, x_0 es solución del sistema inicial, ya que $x_0 \equiv c_i$ (mód m_i) $\forall i \in \{1, 2, \dots, r\}$.

Para hallar la solución general observamos que si x_1 es otra solución, entonces $x_0 \equiv x_1 \pmod{m_i}$ para todo $i \in \{1, 2, \dots, r\}$ y por tanto $m_i \mid (x_0 - x_1)$ y como $\operatorname{mcd}(m_i, m_j) = 1$ para todo $i \neq j$, entonces $m \mid (x_0 - x_1)$, y resulta que $x_1 \equiv x_0 \pmod{m}$. Por lo que la solución general es $x \equiv x_0 \pmod{m}$.

Proposición

Sean $x, y \in \mathbb{Z}$ tales que

```
x \equiv y \pmod{m_1}

x \equiv y \pmod{m_2}

\vdots

x \equiv y \pmod{m_r}
```

Con $mcd(m_i, m_j) = 1$ para todo $i \neq j$. Entonces $x \equiv y \pmod{m_1 m_2 \cdots m_r}$.

Ejercicio

Resolver (si es que tiene solución) el sistema de congruencias $\begin{cases} 5x \equiv 6 \pmod{12} \\ 2x \equiv 5 \pmod{7} \\ 3x \equiv 1 \pmod{5} \end{cases}$

$$\begin{cases} 5x \equiv 6 \pmod{12} \\ 2x \equiv 5 \pmod{7} \\ 3x \equiv 1 \pmod{5} \end{cases}$$

Vemos que $m=12\cdot 7\cdot 5=420$. Despejamos (eliminamos los coeficientes del primer miembro multiplicando por los inversos) y aplicamos el teorema:

$$\left\{ \begin{array}{l} x \equiv 6 \cdot 5 \equiv 6 \pmod{12} \\ x \equiv 5 \cdot 4 \equiv 6 \pmod{7} \\ x \equiv 1 \cdot 2 \pmod{5} \end{array} \right\} \ \Rightarrow \ \left\{ \begin{array}{l} \frac{m}{12} = 35 \text{ y } [35]_{12}^{-1} = 11 \Rightarrow 35 \cdot 11 \equiv 1 \pmod{12} \\ \frac{m}{7} = 60 \text{ y } [60]_{7}^{-1} = 2 \Rightarrow 60 \cdot 2 \equiv 1 \pmod{7} \\ \frac{m}{5} = 84 \text{ y } [84]_{5}^{-1} = 4 \Rightarrow 84 \cdot 4 \equiv 1 \pmod{5} \end{array} \right.$$

Y la solución será de la forma
$$x = 6 \cdot \frac{m}{12} \cdot \left[\frac{m}{12} \right]_{12}^{-1} + 6 \cdot \frac{m}{7} \cdot \left[\frac{m}{7} \right]_{7}^{-1} + 2 \cdot \frac{m}{5} \cdot \left[\frac{m}{5} \right]_{5}^{-1}$$
.
$$\left\{ \ x = (6 \cdot 35 \cdot 11 + 6 \cdot 60 \cdot 2 + 2 \cdot 84 \cdot 4) = 3702 \equiv 342 \pmod{420} \right\}$$

 $x = [342]_{420}$ que se corresponde en \mathbb{Z} con $x = 342 + 420t \forall t \in \mathbb{Z}$.

Una consecuencia (inmediata) del teorema Chino del Resto

Observación: Si en una ecuación en congruencias el valor de m es muy alto, se puede simplificar su resolución transformándola en un sistema de congruencias.

Sea $m=p_1^{r_1}p_2^{r_2}\cdots p_k^{r_k}$, con p_1,\ldots,p_k primos distintos.

Entonces, dados $a,b\in\mathbb{Z}$ se tiene que

$$a \equiv b \pmod{m} \Leftrightarrow a \equiv b \pmod{p_i^{r_i}}$$
, para cada $i = 1, \dots, k$.

Ejemplo

Consideramos la ecuación $91x \equiv 419 \pmod{440}$.

Puesto que mcd(91,440) = 1 la congruencia tiene solución.

Como $440 = 2^3 \cdot 5 \cdot 11$, se tiene que

$$91x \equiv 419 \pmod{440} \Leftrightarrow \begin{cases} 91x \equiv 419 \pmod{8} \\ 91x \equiv 419 \pmod{5} \\ 91x \equiv 419 \pmod{5} \end{cases} \Leftrightarrow \begin{cases} 3x \equiv 3 \pmod{8} \\ x \equiv 4 \pmod{5} \\ 3x \equiv 1 \pmod{5} \end{cases} \Leftrightarrow \begin{cases} x \equiv 1 \pmod{8} \\ x \equiv 4 \pmod{5} \\ x \equiv 4 \pmod{5} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x \equiv 1 \pmod{8} \\ x \equiv 4 \pmod{5} \\ x \equiv 3^{-1} \equiv 4 \pmod{11} \end{cases} \Leftrightarrow x \equiv 1 \cdot 55 \cdot 7 + 4 \cdot 88 \cdot 2 + 4 \cdot 40 \cdot 8 \pmod{440} \Leftrightarrow x \equiv 2369 \pmod{440} \Leftrightarrow x \equiv 169 \pmod{440}.$$

Teorema (Teorema Chino del Resto Generalizado)

Sea el sistema de congruencias

$$\begin{cases} x \equiv c_1 \pmod{m_1} \\ x \equiv c_2 \pmod{m_2} \\ \vdots \\ x \equiv c_r \pmod{m_r} \end{cases}$$

con $m_1, m_2, \dots m_r \in \mathbb{Z}^+$. Si $\operatorname{mcd}(m_i, m_j) \mid (c_i - c_j)$ para todo i, j, el sistema tiene solución única en \mathbb{Z}_m con $m = \operatorname{mcm}(m_1, m_2, \dots, m_r)$.

Ejercicio

Hallar un número natural cuyos restos al dividirlo por 3,4,5 y 6 sean respectivamente 2,3,4 y 5.

Como $\operatorname{mcd}(3,6)=3$ y $\operatorname{mcd}(4,6)=2$ resolveramos primero las tres primeras ecuaciones y comprobaremos si la solución verifica también la otra ecuación. En ese caso, la solución será única en \mathbb{Z}_60 puesto que $\operatorname{mcd}(3,4,5,6)=60$.

$$\left\{ \begin{array}{l} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{4} \\ x \equiv 4 \pmod{5} \\ x \equiv 5 \pmod{6} \end{array} \right\} \Rightarrow \left\{ \begin{array}{l} x \equiv 2 \pmod{3} \\ x \equiv 3 \pmod{4} \\ x \equiv 4 \pmod{5} \\ x \equiv 5 \pmod{6} \end{array} \right\}$$

Tenemos que $\frac{60}{3}=20\equiv 2\pmod{3}$ y $[20]_3^{-1}=[2]_3$. Por otro lado $\frac{60}{4}=15\equiv 3\pmod{4}$ y $[15]_4^{-1}=[3]_4$. Y por último $\frac{60}{5}=12\equiv 2\pmod{5}$ y $[12]_5^{-1}=[3]_5$. Entonces la posible solución del sistema reducido es:

 $x_0 = 2 \cdot 20 \cdot 2 + 3 \cdot 15 \cdot 3 + 4 \cdot 12 \cdot 3 = 80 + 135 + 144 = 359$, es decir, [59] en \mathbb{Z}_{60} .

Comprobamos ahora la cuarta congruencia, y en efecto $59 \equiv 5 \pmod{6}$, entonces $[x_0] = [59]$ en \mathbb{Z}_{60} es la solución del sistema inicial.

Teorema Chino del Resto Generalizado

Ejercicio.

Resuelve el sistemas de congruencias $\begin{cases} 4x \equiv 11 \pmod{15} \\ 10x \equiv 8 \pmod{12} \end{cases}$

Simplificando y despejando resulta

$$\begin{cases} 4x \equiv 11 \, (\text{m\'od } 15) \Leftrightarrow x \equiv 4^{-1} \cdot 11 \equiv 4 \cdot 11 \equiv 44 \equiv 14 \, (\text{m\'od } 15) \\ 10x \equiv 8 \, (\text{m\'od } 12) \Leftrightarrow 5x \equiv 4 \, (\text{m\'od } 6) \Leftrightarrow x \equiv 5^{-1} \cdot 4 \equiv 5 \cdot 4 \equiv 20 \equiv 2 \, (\text{m\'od } 6) \end{cases}$$

Este sistema tiene solución pues mcd(15, 6) = 3|(14 - 2) = 12.

Resolvemos:

$$\begin{cases} x \equiv 14 \pmod{3 \cdot 5} \Leftrightarrow \begin{cases} x \equiv 14 \pmod{3} \Leftrightarrow x \equiv 2 \pmod{3} \\ x \equiv 14 \pmod{5} \Leftrightarrow x \equiv 4 \pmod{5} \end{cases} \\ x \equiv 2 \pmod{2 \cdot 3} \Leftrightarrow \begin{cases} x \equiv 2 \pmod{2} \\ x \equiv 2 \pmod{3} \end{cases} \end{cases} \Rightarrow \begin{cases} x \equiv 2 \pmod{3} \\ x \equiv 2 \pmod{3} \end{cases} \\ x \equiv 4 \pmod{5} \end{cases}$$

Como mcd(2,3) = mcd(2,5) = mcd(3,5) = 1, aplicamos el Teorema Chino del Resto: $x \equiv 2 \cdot 15 \cdot 1 + 2 \cdot 10 \cdot 1 + 4 \cdot 6 \cdot 1 \pmod{2 \cdot 3 \cdot 5} \Leftrightarrow x \equiv 74 \pmod{30} \Leftrightarrow x \equiv 14 \pmod{30}$.