Barrera de Potencial

Pedro Velarde

Departamento de Ingeniería Energética Instituto de Fusión Nuclear Universidad Politécnica de Madrid

7 de marzo de 2019

Definiciones

- Otro caso de solución especialmente simple y útil de solución de la ecuación de Schrödinger es el caso de barrera de potencial.
- > Consideramos en este caso una partícula de masa m sometida a un potencial

$$V(x) = \begin{cases} V_0 & \text{para} & 0 \le x \le L \\ 0 & \text{para} & x < 0 \text{ o } x > L \end{cases}$$
(1)

• Hablaremos de *barrera* cuando $V_0 > 0$ y de *pozo* finito cuando $V_0 < 0$.

Barrera de potencial general: Caso Clásico

Zona azul: Partícula libre Zona roja: Partícula libre en una frontera Zona verde: Partícula ligada Zona amarilla: Imposible

Barrera de potencial general: Caso Cuántico

Zona azul: Partícula libre ($|\Psi|^2$ no integrable) $\psi \to e^{ikx}$ cuando $x \to \infty$ Zona roja: Partícula libre en una frontera Zona verde: Partícula ligada ($|\Psi|^2$ integrable) $\psi \to 0$ cuando $x \to \infty$ Zona amarilla: Imposible

Caso clásico

▶ La solución clásica a este problema sería una partícula en movimiento uniforme a trozos, y un cambio brusco de velocidad en las fronteras x = 0 y x = L. Si $E > V_0$, entonces dentro en la zona de acción del potencial $(0 \le x \le L)$ la velocidad cae de $\sqrt{2E/m}$ a $\sqrt{2(E - V_0)/m}$. Si $E < V_0$, la partícula no puede penetrar en la barrera y retrocede con velocidad $-\sqrt{2E/m}$

Si inciden partículas de masa m sobre la barrera con distintos valores de energía (cinética) de 0 a ∞, entonces el coeficiente de transmisión de la barrera, cociente de partículas que pasan la barrera respecto a las que inciden, sería

$$T = \left\{ \begin{array}{rrr} 0 & \mathrm{si} & E < V_0 \\ 1 & \mathrm{si} & E > V_0 \end{array} \right.$$

► Hablaremos de barrera cuando V₀ > 0 y de pozo finito cuando V₀ < 0.</p>

Comparación caso clásico y cuántico

Pozo de potencial en semiconductores

Figura: Fotografía por barrido electrónico de una heterounión, formada por una capa central de GaAs de 6 nm flanqueada por dos capas de AlGaAs. La forma de la figura corresponde a la variación del potencia que es visto por los electrones de conducción (Basdevant 2007)

Pozo de potencial en semiconductores

Figura: Transporte de electrones por una barrera de $\rm Cd_3As_2$ al aplicar un campo magnético (P. Moll et al Nature 2016)

Planteamiento del problema: Condiciones de contorno

 Al ser un problema estacionario la ecuación de Schrödinger se reduce a la ecuación de valores propios de H

$$-\frac{\hbar^2}{2m}\psi'' + V\psi = E\psi \Longrightarrow \boxed{\psi'' = -K^2\psi}$$

- Dado que el potencial es discontínuo, hay que especificar por trozos las soluciones. La función de onda siempre será continua con derivada continua.
- ▶ Si llamamos $\psi_s(x)$ la solución en la región s (ver figura), entonces tenemos

Caso $E > V_0$

Región	Extensión	Ecuación	K	Solución
1	x < 0	$\psi_1^{\prime\prime} = -k^2 \psi_1$	$k = \sqrt{2mE/\hbar^2}$	$A_1 e^{ikx} + B_1 e^{-ikx}$
2	0 < x < L	$\psi_2^{\prime\prime} = -\alpha^2 \psi_2$	$\alpha = \sqrt{2m \left V_0 - E \right / \hbar^2}$	$A_2 e^{i\alpha x} + B_2 e^{-i\alpha x}$
3	x > L	$\psi_3^{\prime\prime} = -k^2 \psi_3$	$k = \sqrt{2mE/\hbar^2}$	$A_3e^{ikx} + B_3e^{-ikx}$

Caso $E < V_0$, sólo cambia en la segunda región, con $\alpha \rightarrow i \alpha$

Región	Extensión	Ecuación	K	Solución
2	0 < x < L	$\psi_2^{\prime\prime} = \alpha^2 \psi_2$	$\alpha = \sqrt{2m \left V_0 - E \right / \hbar^2}$	$A_2 e^{-\alpha x} + B_2 e^{\alpha x}$

- Las condiciones de contorno en cada interfase de regiones son siempre de continuidad de ψ y su derivada

Determinación de coeficientes

- Aplicando la continuidad de la función ψ y de su derivada en cada una de las fronteras entre regiones

Caso $E > V_0$ (caso $E < V_0$ cambiar α por $i\alpha$)

Frontera	Continuidad ψ y ψ'	
$1 \cap 2$	$\psi_1(0) = \psi_2(0)$	$A_1 + B_1 = A_2 + B_2$
	$\psi_1'(0) = \psi_2'(0)$	$k(A_1 - B_1) = \alpha(A_2 - B_2)$
$2 \cap 3$	$\psi_2(L) = \psi_3(L)$	$A_2 e^{i\alpha L} + B_2 e^{-i\alpha L} = A_3 e^{ikL} + B_3 e^{-ikL}$
	$\psi_2'(L) = \psi_3'(L)$	$\alpha \left(A_2 e^{i\alpha L} - B_2 e^{-i\alpha L} \right) = k \left(A_3 e^{ikL} - B_3 e^{-ikL} \right)$

que forma un sistema de 4 ecuaciones con 6 incógnitas A_s y B_s (s = 1, 2, 3).

- ► La normalización de ψ no puede aplicarse al ser partícula libre para $x \to \pm \infty$.
- La forma de reducir el número de incógnitas es por simetría: Ψ₁(x) = e^{-iEt/h}ψ₁(x) es una composición de 2 ondas, una que viaja a la derecha (coeficiente A₁) y otra a la izquierda (coeficiente B₁).
- ► Lo mismo sucede con Ψ_3 . Si suponemos que las partículas las inyectamos desde la izquierda con velocidad positiva, entonces no cabe esperar ondas que vengan del extremo derecho (desde $x = +\infty$). Luego en este caso podemos suponer $B_3 = 0$.
- ► El caso completamente simétrico es con partículas que inciden desde el lado derecho, viajando hacia la izquierda, en cuyo caso tendríamos *A*₁ = 0.

Determinación de coeficientes

► Hay que recordar (ver capítulo de ondas) que una onda de la forma $e^{i(kx-\omega t)}$ es una onda que viaja con velocidad *positiva* ω/k

- Con esta descomposición de partículas incidentes desde la izquierda, eliminamos una de las incógnitas (B₃).
- Ahora tenemos 4 ecuaciones con 5 incógnitas. Podemos poner el resto en función de una de ellas. Para encontrar cuál sería la elección con más utilidad práctica, tenemos que ver qué es lo que interesa habitualmente. El problema real consistiría en un flujo de partículas (neutrones) incidentes sobre la barrera (núcleos), así que como dato tenemos el flujo de partículas incidentes, y queremos saber el transmitido.
- ▶ Pero el flujo de partículas es $\rho v = J_+$, donde J_+ es la corriente de probabilidad de las ondas $\Psi_{1+} = A_1 e^{-iEt/\hbar} e^{ikx}$ que viajan a la derecha

$$J_+ = -i\frac{\hbar}{2m}\left(\Psi_{1+}^*\frac{\partial\Psi_{1+}}{\partial x} - \Psi_{1+}\frac{\partial\Psi_{1+}^*}{\partial x}\right) = \frac{\hbar k}{m}|A_1|^2 = \frac{p}{m}|A_1|^2$$

► Por lo tanto parece conveniente poner todas las constantes en funcion de *A*₁, relacionada directamente con⊧el flujo de partículas incidentes.

Determinación de coeficientes (caso $E > V_0$)

▶ Resolviendo el sistema anterior de 4 ecuaciones en *B*₁, *A*₂, *B*₂ y *A*₃, tenemos

$$\begin{array}{lcl} \frac{B_1}{A_1} & = & \frac{\left(k^2 - \alpha^2\right)\left(1 - e^{2i\alpha L}\right)}{\left(k + \alpha\right)^2 - \left(k - \alpha\right)^2 e^{2i\alpha L}} \\ \frac{A_3}{A_1} & = & \frac{4k\alpha\left(1 - e^{i(\alpha - k)L}\right)}{\left(k + \alpha\right)^2 - \left(k - \alpha\right)^2 e^{2i\alpha L}} \end{array}$$

Los coeficientes de transmisión y reflexión son

$$T = \left| \frac{A_3}{A_1} \right|^2 = \frac{1}{1 + \frac{V_0^2}{4E(E - V_0)} \operatorname{sen}^2(\alpha L)}$$
$$R = \left| \frac{B_1}{A_1} \right|^2 = 1 - T$$

▶ Para $E \to V_0$ tenemos ($\alpha \to 0$ también)

$$T = \left(1 + \frac{m}{2\hbar^2}L^2V_0\right)^{-1}$$

resultado completamente distinto al 0 o 1 de la mecánica clásica. Sólo la barrera llega a ser transparente (caso clásico) cuando

$$\operatorname{sen} \alpha L = 0$$

es decir, para valores discretos de la energía (resonancias) $E = V_0 + \frac{\hbar^2}{2m} \frac{n^2 \pi^2}{L^2}$

Determinación de coeficientes (caso $E < V_0$)

Veamos ahora el caso E < V₀, más sorprendente por el resultado. Podemos utilizar el trabajo hecho para E > V₀ cambiando por doquier α por iα, teniendo en cuenta que sen ix = i senh x, quedando

$$T = \frac{1}{1 + \frac{V_0^2}{4E(V_0 - E)} \operatorname{senh}^2(\alpha L)}$$

es decir, hay transmisión a través de la barrera incluso cuando la energía es menor que la barrera V_0 de potencial

▶ Un caso de especial interés es cuando la barrera es importante respecto a la energía de la partícula. Em este caso $\alpha L \gg 1$, en cuyo caso

$$T \approx \frac{16E(V_0 - E)}{V_0^2} e^{-2\alpha L} \approx e^{-2\alpha L}$$

por lo tanto la transmisión a través de la barrera decae exponencialmente con $\sqrt{V_0}L.$

Resultados: Coeficiente de Transmsión

Coeficiente de Transmisión en función de E/V_0 , para dos casos de anchura del pozo diferente.

Resultados: Parte real de la función de onda

Parte real de la función de onda para el caso de electrones con energías de E = 1 eV, altura de la barrera $V_0 = 0.9$ eV y anchura L = 0.5 nm. Los números adimensionales correspondientes son: $V_0/E = 0.9$, $\frac{m}{2\hbar^2}V_0L^2 = 1.48$ y como resultado un coeficiente de transmisión de T = 0.48. Casi el 50 % del haz pasaría la barrera.

Resultados: Densidad de probabilidad

Densidad de probabilidad $|\psi|^2$, para las mismas condiciones anteriores. El valor a la derecha de la barrera es precisamente el coeficiente de transmisión ($T \approx 0.48$).

 $|\psi|^2$

Sucesión de barreras: WKB

- ► Habíamos obtenido antes que $T \approx e^{-2\alpha L}$. Podemos imaginar una sucesión de barreras de altura $V(x_i)$ situadas entre $x_i = i\Delta x$ y $x_{i+1} = x_i + \Delta x$.
- Podemos aplicar la fórmula anterior a cada escalón, con $L = \Delta x$

$$P_i = e^{-2\alpha_i \Delta x} = e^{-2\sqrt{\frac{2m}{\hbar^2}(V(x_i) - E)}\Delta x}$$

La probabilidad conjunta será

$$P = \prod_{i} P_{i} = e^{-2\Delta x \sum_{i} \sqrt{\frac{2m}{\hbar^{2}} (V(x_{i}) - E)}}$$

▶ Tomando el límite de $\Delta x \rightarrow 0$, pero manteniendo $\sum_i \Delta x = a$ constante, tenemos

$$P = e^{-\sqrt{8m/\hbar^2} \int_0^a \sqrt{V(x) - E} dx}$$

expresión bastante útil para calcular coeficientes de transmisión en barreras de formas no cuadradas.

Pozo Finito

- Un caso fuertemente relacionado con el de barrera es el de $V_0 < 0$. En este caso la solución $E < V_0$ no existe, ya que la función de onda sería nula por doquier.
- Debido a las condiciones de contorno, tenemos que distinguir entre los casos E > 0 y E < 0, dado que para E > 0 tenemos partícula libre, y en el caso $V_0 < E < 0$ tenemos partícula ligada.
- Para caso E > 0, la solución es exactamente igual que para la barrera, sólo que ahora V₀ es negativo, y α > k. Clásicamente esto quiere decir que la partícula se acelera cuando entra en el pozo, para frenarse de nuevo a la velocidad inicial al salir de el.
- El caso E < 0 es completamente diferente en el resultado, pero análogo en la forma de solución.

Pozo Finito

Caso E < 0 Semejante al caso de barrera cambiando $k \rightarrow ik$

Región	Extensión	Ecuación	K	Solución
1	x < 0	$\psi_1'' = k^2 \psi_1$	$k = \sqrt{2m \left E \right / \hbar^2}$	$A_1 e^{-kx} + B_1 e^{kx}$
2	0 < x < L	$\psi_2^{\prime\prime} = -\alpha^2 \psi_2$	$\alpha = \sqrt{2m \left V_0 - E \right / \hbar^2}$	$A_2 e^{i\alpha x} + B_2 e^{-i\alpha x}$
3	x > L	$\psi_3'' = k^2 \psi_3$	$k = \sqrt{2m \left E \right / \hbar^2}$	$A_3 e^{-kx} + B_3 e^{kx}$
Condicio	nes de contor	no		
_				
Frontera	Continuida	d ψ y ψ'		
Frontera $-\infty$	Continuida $\psi_1(-\infty)$	$\frac{\mathrm{d}\psi\mathrm{y}\psi'}{\mathrm{d}\mathrm{d}\psi} = 0$	$A_1 = 0$	
Frontera $-\infty$ $1 \cap 2$	$ Continuida \psi_1(-\infty) \psi_1(0) = $	$\frac{\mathrm{d}\psi\mathrm{y}\psi'}{\psi_2(0)}$	$A_1 = 0$ $A_1 + B_1 = A_2$	$+ B_2$
Frontera $-\infty$ $1 \cap 2$	$ \begin{array}{c} \text{Continuida} \\ \psi_1(-\infty) \\ \psi_1(0) = \\ \psi_1'(0) = \end{array} $	$ \begin{array}{c} \mathbf{d} \ \psi \ \mathbf{y} \ \psi' \\ \mathbf{y} = 0 \\ \psi_2(0) \\ \psi'_2(0) \end{array} $	$A_1 = 0$ $A_1 + B_1 = A_2$ $k(-A_1 + B_1) = i\alpha($	$+ B_2 A_2 - B_2)$
Frontera $-\infty$ $1 \cap 2$ $2 \cap 3$	Continuida $\psi_1(-\infty) = \psi_1(0) = \psi_1'(0) = \psi_2(L) = \psi_2(L) = \psi_2(L)$	$ \begin{array}{l} d \ \psi \ y \ \psi' \\ \hline \psi = 0 \\ \psi_2(0) \\ \psi'_2(0) \\ \psi_3(L) \end{array} $	$A_1 = 0$ $A_1 + B_1 = A_2$ $k(-A_1 + B_1) = i\alpha($ $A_2e^{i\alpha L} + B_2e^{-i\alpha L} = A_3$	$+B_2$ $A_2 - B_2)$ $e^{-kL} + B_3 e^{kL}$
Frontera $-\infty$ $1 \cap 2$ $2 \cap 3$	Continuida $\psi_1(-\infty) = \psi_1(0) = \psi_1(0) = \psi_2(L) = \psi_2(L)$		$A_1 = 0$ $A_1 + B_1 = A_2$ $k(-A_1 + B_1) = i\alpha($ $A_2e^{i\alpha L} + B_2e^{-i\alpha L} = A_3$ $A_2e^{i\alpha L} - B_2e^{-i\alpha L}) = k \left(-\frac{1}{2} \right)$	$+ B_2$ $A_2 - B_2)$ $e^{-kL} + B_3 e^{kL}$ $-A_3 e^{-kL} + B_3 e^{kL}$)
Frontera $-\infty$ $1 \cap 2$ $2 \cap 3$ ∞	Continuida $\psi_1(-\infty)$ $\psi_1(0) =$ $\psi'_1(0) =$ $\psi_2(L) =$ $\psi'_2(L) =$ $\psi_3(\infty)$	$d \psi y \psi'$ $b) = 0$ $\psi_2(0)$ $\psi'_2(0)$ $\psi_3(L)$ $\psi'_3(L) i\alpha \left(A\right)$ $b = 0$	$A_{1} = 0$ $A_{1} + B_{1} = A_{2}$ $k(-A_{1} + B_{1}) = i\alpha(A_{2}e^{i\alpha L} + B_{2}e^{-i\alpha L} = A_{3}$ $A_{2}e^{i\alpha L} - B_{2}e^{-i\alpha L}) = k(A_{2}e^{i\alpha L} - B_{2}e^{i\alpha L}) =$	$ + B_2 A_2 - B_2) e^{-kL} + B_3 e^{kL} - A_3 e^{-kL} + B_3 e^{kL}) $

Normalización

$$\int_{-\infty}^{\infty} |\psi(x)|^2 = \int_{-\infty}^{0} |\psi_1(x)|^2 \, dx + \int_{0}^{L} |\psi_2(x)|^2 \, dx + \int_{L}^{\infty} |\psi_3(x)|^2 \, dx = 1$$

Estados ligados

- Por lo tanto ahora tenemos 7 ecuaciones con 6 incógnitas (realmente 13 ecuaciones con 12 incógnitas). Tiene que existir alguna ecuación que sobre, combinación de las otras, lo que nos lleva a general una condición de compatibilidad en los coeficientes, y esto nos llevará a una condición sobre la energía.
- Eliminando B_1 y A_3 llegamos a una ecuación homogénea en A_2 y B_2 , cuyo determinante ha de ser nulo a fin de tener una solución no nula

$$(k+i\alpha)^2 e^{i\alpha L} = (k-i\alpha)^2 e^{-i\alpha L}$$

de donde deducimos

$$(k^2 - \alpha^2) \sin \alpha L + 2k\alpha \cos \alpha L = 0$$
⁽²⁾

Esta es una condición sobre E, ya que k y α dependen sólo de esa incógnita.

Estados ligados: Determinación de E

► Si hacemos el cambio $y = kL/2 x = \alpha L/2$ en (2)obtenemos

$$(y^2 - x^2) \sin 2x + 2xy \cos 2x = 0$$

Probando $x = r \cos \theta$ e $y = r \sin \theta$ llegamos a $\tan 2\theta = \tan 2x$, de donde $2\theta = 2x + n\pi$ para n = 0, 1 (el resto es lo mismo). Los dos casos son

$$n = 0 \Longrightarrow x \tan x = y$$

$$n = 1 \Longrightarrow -x/\tan x = y$$
(3)

Cualquiera de las dos soluciones es aceptable.

Por otra parte

$$r^{2} = x^{2} + y^{2} = \frac{m}{2\hbar^{2}} |V_{0}| L^{2}$$
(4)

- Las ecuaciones (3) y (4) son dos curvas cuyos puntos de intersección definen los valores de x e y, y por lo tanto de la energía.
- Siempre hay al menos un estado ligado, por muy débil que sea el potencial.

Energía de los estados ligados

