Computer Technology and Structure
1st assembler program in Arduino (Ala practice): Blink a led

1) Objectives (learning outcomes):

The main objectives of this first assembler programming practice are:

- Understanding the basic structure of an assembler program for Arduino (Atmel microprocessor)
- Learning how to use the development environment (Atmel Studio 6.1)
- Learning how to use Arduino’s digital outputs (for example to blink a LED once per second)

This will be done using an Arduino Mega2560 platform (based on the Atmel ATMega2560 microprocessor). The
Arduino platform is little more than a board that allows interfacing with the processor, so the assembler
programming will be very similar for other Arduino models (and also for other devices based on Atmel
microprocessors). Atmel processors shares a common processor core (AVR) so most of the names and documents
uses the name AVR instead of Atmel.

2) Installing the software

There are many different ways to write assembler programs and then upload them to the Arduino platform. The
one requiring minimal software requires only any text editor (such as Notepad, Gedit, emacs, etc) and some of
the AVRtoolchain or WinAVR utilities to translate the program to machine code (binary or hex program) and then
uploading it to the Arduino’s processor.

However, when writing assembler programs it can be difficult to find out why the code is not doing what it’s
supposed to do. There a debugger comes in handy. Also a simulator is a very useful tool for developing correct
programs before uploading them to the Atmel processor. The Atmel Studio 6.1 is a free

IDE (Integrated Development Environment) that includes all those functionalities using
the same interface. It also allows programming Atmel processors using C and C++
languages. Its major drawback is that only the Windows version is available (you’ll need

a virtual machine to run it under other platforms). Atmel Py i

You can download Atmel Studio 6.1 (AvrStudio6lsp2net.exe) from the manufacturer’s webpage. Just install it

(can ask to install some Visual Studio runtime components so the installation could take some time to complete).

It's also recommended to install the Arduino IDE (open source). It's a [too] simple
programming environment that allows writing and uploading C programs to the Ra=g-—d
Arduino. It brings along several C examples showing how to use the different

capabilities of the Atmel processor, and also includes WinAVR (that’s why we need it;

you can also forget of Arduino IDE and download just WinAVR from other source).

3) Starting a new assembler program in Atmel Studio

New Project P |

Recent Templates Sort by: | Default =1z

Once installed, Atmel Studio is ready to work. T

|__AVR Asembler Projecy Asembler Typs: Amsmbler

CLASES PARTICULARES, TUTORIAS TECNICAS ONLINE
LLAMA O ENVIA WHATSAPP: 689 45 44 70

artagend

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS
CALL OR WHATSAPP:689 45 44 70

1ocauon trom tne neginning. Then click “ok”. ‘ . ‘

www.cartagena99.com no se hace responsable de la informacién contenida en el presente documento en virtud al
Articulo 17.1 de la Ley de Servicios de la Sociedad de la Informacion y de Comercio Electronico, de 11 de julio de 2002.
Si la informacién contenida en el documento es ilicita o lesiona bienes o derechos de un tercero haganoslo saber y sera retirada.

Computer Technology and Structure

4- In the next window, select the processor we are (Wi
going to use (the one into our Arduino, the | secermy [messvees -
ATmega2560 model). Once selected you get the 5:”59:25\ ;gp"“wwm'(w Eﬁiw :;M' =
option of downloading the datasheets for this iﬁg%ﬁ u 5 isi 3Dj ;;f';iiva
model (if you hadn’t done it yet, that’s the ::::5:1::?’”“;2 - = -
moment!). Once selected, click “ok”. : : :7
5- Then a new project is created, containing a source Eﬁéizgé:;? %E ?jgg 5032
file with the name you gave to the project (say %Eg};;: r o s
blink_in_asm) and extension .asm. Atmel Studio will | s = v wis

automatically open any file with extension .asm

(unless you change this setting).

6- Source file blink_in_asm.asm appears empty except for some comments. Comments in this editor can be

written in two ways:
a. For several-line comments, between /* and */ characters
b. For single-line comments, after the ; character
7- It's recommended (good programming practice) to start any assembler program always with the initial
directives that you can find in the classroom slides. Write them, your source file should appear like this:

L icationl - AtmelStudio (Admini) o i
File [Edit WView VAssist{ ASF Project Build Debug Jools Window Help
Pl - S @ KB - - -0 [[F | b W |Debug -Ha R EG - EE| 2 (O3 e el
B B+ S SR A [T e BN | Hex | @« =i w B i FH eS| o @M ATmega?560 § NoTool -
? i i
_ |} AssemblerApplicationlasm* x
! Fla B
_ AssemblerApplicationl.asm = Al Solution ‘Assemblerfpplicationl’ (1 project
=} A Bl AssemblerApplicationl
Created: 20/02/2014 16:06:33 <4 Dependencies
Author: Administrador Labele)
3 L3
J Output Files
- .INCLUDE "m256@def.inc" ;has pin and port "human” names for ATMe L ,‘iA“ "”bl ‘: e
.device ATmegaZ568 ;forces checking for invalid instructions in ATMega256@ processor ARSI DRCIOR .
.0RG Gx00000 ;Program memory position @x@0088 is executed after each reset
RIMP main ;reset “interrupt vector” (address to jump to after a reset)
;there must be placed the "interrupt vectors" for other interrupts (if using any of them)
.ORG BxB0872 ;leave room for the "interrupt vectors” at the beginning of the progam
main:
LDI R16,0x@7 ;just an example instruction
;place your code here
RIMP main ;provoke an infinite loop
-EXIT
o Kl i ’
100% = « » —gSc\uvon Explorer
Error List o
@ 0Emors | f\ 0Wamings | (i) 0 Messages
Description File Line Column Project

_i Eror List

As you can see, the editor puts different colours for comments (green), instructions (blue) and operands (black),
that helps a lot in reading the code. Once you save the program, a green vertical bar appears to the left; when any

CLASES PARTICULARES, TUTORIAS TECNICAS ONLINE
LLAMA O ENVIA WHATSAPP: 689 45 44 70

Carta ENd

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS
CALL OR WHATSAPP:689 45 44 70

device to the pin corresponding to the selected port and pin.

www.cartagena99.com no se hace responsable de la informacién contenida en el presente documento en virtud al
Articulo 17.1 de la Ley de Servicios de la Sociedad de la Informacion y de Comercio Electronico, de 11 de julio de 2002.
Si la informacién contenida en el documento es ilicita o lesiona bienes o derechos de un tercero haganoslo saber y sera retirada.

Computer Technology and Structure
Writing a 0 to an output bit in a port will put the corresponding pin to 0 volts. Writing a 1, will force 5 volts in that
pin. And this can be used for any task, for example turning on or off a LED.

Although any port can be used for I/O tasks, PORT B has better driving capacity, in other words, it can give more
current to the device connected to it, than other ports. Thus the Arduino platform includes an on-board “Test”

LED (that programmers can use at our convenience) connected to one of PORT B’s bits:

“Test” led {pin13) igital /O - PWM pi Comm. pins

e s g e

suid o/ [3BIQ

ATmeda2560
processor

This on-board LED is connected to PORT B’s bit 7 in the Arduino Mega2560; the same bit is connected to
Arduino’s output pin 13 (so an external LED can be also connected). . Some words of warning: in older Arduino
models, the on-board LED was traditionally connected to PORT B’s bit 5, so check that for your Arduino model

before using this LED.

You can find the full Arduino Mega2560 pinout in the classroom slides for Unit 1, page 24.

4.1) 1/0 ports handling

Before using any port, you need to understand how they work in the Atmel| i
MName Address Value Bits

processors. Each 1/O port ‘p’ is handled using 3 registers: PORTp, DDRp and o 3 oo 00000000

PINp. For example port B is handled using the PORTB, DDRB and PINB registers: ﬁ%‘:f; gng Exgg BSSBSSSS

- DDRp (Data Direction Register p) is used to select the data direction (input or output) for each of the port
p pins:
o Writing a 0 value to bit n means that port p, bit n is going to be used as a digital input (so it will
accept 0/5V voltages FROM “the world”)
o Writing a 1 value to bit n means that port p, bit n is going to be used as a digital output (so it will
force 0/5V voltages TO “the world”)
o Example: OUT DDRB,R17 ; say that R17=1001011b: then this will configure port B pins 0, 1, 3 and 7 as

outputs, pins 2,4,5 and 6 as inputs
- PINp (Port INput p) contains the bits which are physically connected to the I/0 pins of the processor. By

£ bl H

vamddim~ DINIG HhA nvAmAA ol il £ lioiial 1

CLASES PARTICULARES, TUTORIAS TECNICAS ONLINE
LLAMA O ENVIA WHATSAPP: 689 45 44 70

Carta ENd

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS
CALL OR WHATSAPP:689 45 44 70

www.cartagena99.com no se hace responsable de la informacién contenida en el presente documento en virtud al
Articulo 17.1 de la Ley de Servicios de la Sociedad de la Informacion y de Comercio Electronico, de 11 de julio de 2002.
Si la informacién contenida en el documento es ilicita o lesiona bienes o derechos de un tercero haganoslo saber y sera retirada.

Computer Technology and Structure

o For port pins configured as inputs, writing a 1 (or a 0) allows us to select the “type of input” to use

(with or without the internal pull-up resistor); don’t worry about this now, we’ll come back to this
point in future practices.

Usually PINp is read to obtain the digital inputs’ values (IN Rd, PINp), while PORTp is written for sending digital
outputs’ values (OUT PORTp, Rr).

Note that /N and OUT instructions are used to read/write the complete register (PORTp, DDRp or PINp) at a time.
However you can use the SBI, CBI instructions to set or clear any individual bit (and thus a single pin).

In particular, in order to manipulate the on-board LED, firstly you have to configure PORT B’s pin7 as output (by
writing DDRB’s bit 7 to 1). Then, writing a 1 to PORTB’s bit 7 will output a 1 (5V) and the on-board LED will turn
on, while writing a 0 will output a 0 (0V) and the on-board LED will turn off.

5) Timing the on-off switching using delays

The goal of the program is to turn on and off the on-board LED once per second (approximately). This will
require doing some timing here. It can be done in two ways:

- Using one of the timers available in the Atmel processor. This allows the CPU execute other tasks while
the time period expires, however it requires handling the timer interrupts, so we’ll leave this for further
practices

- Executing delay operations until the desired time has elapsed. This is a common approach for simple
applications where the CPU does not need to do other tasks in the meanwhile.

The usual delay loops increase (or decrease) one or more registers, acting as counters, until a certain value is
reached. To estimate how many INC/DEC operations we need to do, we must take into account that the
ATmega2560 clock runs by default at a frequency of 16MHz (in other words, there are 16M clock ticks per
second). A single delay loop with an 8-bit register that is increased from 0 to 256 (256=back to 0 again) will use
256 increments, 256 comparisons and 256 conditional jumps. Each increment, and comparison are executed in 1
clock tick each, plus 2 ticks to execute the jump, so the full loop will take 4*256=1024 ticks (requiring 0.064
milliseconds).

Thus, you'll need to use nested delays in order to get a 1 second delay. Each time that the first register reaches
256, a second register is increased in one unit. The second register will then take (1024+4)*256= 263168 clock
ticks to run from 0 to 256 (taking into account the corresponding increment, comparison and jump operations),
taking now 16.45 milliseconds. Finally a third register is needed, increasing it in one unit each time that the
second register reaches the value 256. In order to complete 1 second, the third register needs to be increased
1/0.016 = 60 times.

This calculation is not exact, because the loop’s jump takes only 1 clock ticks to complete when the jump is not
executed (that happens once out of 256 iterations). However we don’t need to be very exact for this application,
so it should do the work.

CLASES PARTICULARES, TUTORIAS TECNICAS ONLINE
LLAMA O ENVIA WHATSAPP: 689 45 44 70

Carta ENd

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS
CALL OR WHATSAPP:689 45 44 70

www.cartagena99.com no se hace responsable de la informacién contenida en el presente documento en virtud al
Articulo 17.1 de la Ley de Servicios de la Sociedad de la Informacion y de Comercio Electronico, de 11 de julio de 2002.
Si la informacién contenida en el documento es ilicita o lesiona bienes o derechos de un tercero haganoslo saber y sera retirada.

Computer Technology and Structure
However the program can be correct from a syntactical point of view, and still operate in a wrong way. If you
upload the program to the processor, run it, and don’t get the expected results, how can you find what’s wrong?

Before attempting to upload the program to the processor, it's recommended that you simulate its operation
just to be sure it’s working as you expect to and, if don’t, find why and correct it. This can be done using the Atmel
Studio debugger.

Once your .hex file is ready, start the debugger using the menu Debug ?Start debugging and Break (or hitting
the Alt+F5 keyboard shortcut). This will start simulating the execution of the program in the ATmega2560 CPU,
stopping just before executing the first instruction (it must be a RIMP instruction at program address 0x000000).

® prueba_blink_asm_fromScratch (Debugging) - AtmelStudio (Administrator) o il]
Elle Edit View VAssist{ ASF Project Build Debug Jools Window Help
- B -S| s a0 - - S-C [A BB Devug * Gt O B R = = O =1 o il
S FRE A0 L G0 @2 0 b | T e | B DD DG 0 o f P8 X | ATmega2se0 T S
| ® i s
] = Filter: -
- e e . = Memary 1 rax)| S e =
¥l prueba_blink_asm_fromScratch.asm . - - Name Value
-] ; . # @ AD_CONVERTER
* Created: /11/2013 16:08:24) -
L :’\Lt‘\;I :\;m |'.flft"'-"i0|i i 4 : + G ANALOG_COMPARATOR i
’ AR TR £ B B0OT LOAD 4
| . ; B EEPROM
. B " T - ATMega2S60 -
| .IrlEITUDE m2568def.inc” ;pin and port "human™ names for ATMegalS6 # [EXTERNAL INTERRUPT
.device ATmega256@ B 1TAG
! ;.DEF AH = R16 ;example register definition W8l PORTA
;.equ DORB = 0x04 ;already defined in "m256@def.inc" Wl PORTR
;.equ PORTB = 8x@5 ;already defined in "m256@8def.inc" i
Name Address Value Bits
/] .CSEG % @criorl s o0 OOO0O0O00OO
-ORG 0x9000@ ;reset interrupt vector = + W0 GPIOR2 OxdB 0x00 QO0000000
rimp RESET # @SMCR 0x52 0x00 D000
® B MCUSR Ox54 Ox01 ooooe =
.ORG @x28072 ;leave room for IRQ vectors # B MCUCR 0x55 Ox00 O O ao
RESET: Bravpz 058 000 00OO0OOOCOO
;1di R16,0x20 ; (0€10 000@) mask for pin 13 in output port B BEND 0x5C 0x00 D0O000000
1di R16,0x80 ; (1000 200@) mask for pin 13 in output port B Bsp %50 (x21FF COSOCODE ssessess
;sbi DDRB,5 ; ;set bit 5 (pin 13) as output pin (data direction=1) = ﬂSREG OxSF CGClO 00000000 o
jiowe\\. L ASF Ex... Proces.. @ Solutio.. B8 Proper..

{ Memory 1 3 x

Watch 1

Value

N Co.. MImm.. M Out

B autos M Locals PERUERGRN M Watch 2

Stopped

The “I/O View” panel appears at the right side of the window, showing the contents of the different parts of the

Atmel processor (ports, CPU registers, etc.). Another window allows exploring the contents of the different
memories: FLASH program memory, SRAM data memory (RO to R32 are the 32 first positions of it), EEPROM
memory.

Once there you can control the debugging of the program using:

- F11 (step into) or F10 (step over) to execute the next instruction and stop again. If the instruction were a
function CALL, F10 (step over) would execute it in a single step (stopping again after returning), while F11
(step into) would enter the function and stop in its first instruction.

Clicking at the left of one instruction will set (or remove) a BREAKPOINT, I aloop:

012

LLAMA O ENVIA WHATSAPP: 689 45 44 70

Carta ENd

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS
CALL OR WHATSAPP:689 45 44 70

CLASES PARTICULARES, TUTORIAS TECNICAS ONLINE

| 10 PORTB 0x25 0x80 80000000

www.cartagena99.com no se hace responsable de la informacién contenida en el presente documento en virtud al
Articulo 17.1 de la Ley de Servicios de la Sociedad de la Informacion y de Comercio Electronico, de 11 de julio de 2002.

Si la informacién contenida en el documento es ilicita o lesiona bienes o derechos de un tercero haganoslo saber y sera retirada.

Computer Technology and Structure
7) Uploading the assembled program to the Arduino

When you connect the Arduino board to any of your computer’s USB ports (and after windows finishes doing its
obscure things), a new serial port will appear in your computer representing this connection. Usually it will be
named “COM3”, you can review your hardware just to see if it’s there. This will be the port you have to use to
“talk” with the Arduino.

In order to upload your binary file (blink_in_asm.hex) to the program memory of the Atmel processor, you can
use the AVRdude.exe utility. This is a command-line utility, however you can integrate it into the Atmel Studio IDE
following those steps to set AVRdude as an external tool to upload de program to the Arduino board:

From the menu Tools 2External Tools, in the window that will open: External Tools 5

- put a “Title” for the new tool (ex: Usb to Serial Programmer: E
COM3)

- In “Command”, write the full path to the AVRdude.exe
executable. You can search for that file, however it will be U
located in the folder where you installed Arduino IDE (or the Move Down
AVR tools), something like this: Title: Usb to Serial Programmer; COM3
[your_path_to_AVRdude.exe_here]\avrdude.exe Command: =

- In Arguments: write the following expression (substituting the Atguments -CDAArduino\Arduino-masterbuldwindov [|
full path to the file “avrdude.conf’ with yours): Initial directory:)
-C[your_path_to_AVRdude.conf_here[\avrdude.conf -V -V - @y outputwindow Wl broinpt for argaments
patmega2560 -cwiring -P\\.\COM3 -b115200 -D -V - | [lTreatoutputasUnicode Hszmoms
Uflash:w:"S(ProjectDir)Debug\$(TargetName).hex":i ok][concel App

And that’s all. You only need to do this once, from now on you can upload eis oo [Windew el

- ,;J- > Command Prompt

any program directly from the Tools menu; here a new entry with the name

I ¥ &8 Device Programming Ctrl+Shift+P L]
you gave to the tool will appear. By selecting it, your .hex program will be T Add target
uploaded to the Arduino o i] |

Add-in Manager...

=

Extension Manager..

The program will start running automatically each time you power-up the i o

Ush to Serial Programmer: COM3
Arduino, and it will be restarted whenever you click the Arduino’s “reset” Extemal Tooks.

3, resy Import and Export Settings. 3)

button. If everything is correct, you should see the on-board LED blinking on
and off each second. o Options..

Customize...

CLASES PARTICULARES, TUTORIAS TECNICAS ONLINE
LLAMA O ENVIA WHATSAPP: 689 45 44 70

Carta ENd

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS
CALL OR WHATSAPP:689 45 44 70

www.cartagena99.com no se hace responsable de la informacién contenida en el presente documento en virtud al
Articulo 17.1 de la Ley de Servicios de la Sociedad de la Informacion y de Comercio Electronico, de 11 de julio de 2002.
Si la informacién contenida en el documento es ilicita o lesiona bienes o derechos de un tercero haganoslo saber y sera retirada.

