Bring ideas to life
VIA University College

DES M1 Refrigeration fundamentals

Lecture 1

Purpose and function

Refrigeration principles

Use of pressure and boiling point in a refrigeration system

Energy balance for a refrigeration system

Refrigeration example

Refrigeration

Heat pump

Single stage refrigeration circuit Cold store example

Boiling point Enthalpy

Boiling point Pressure

Heat and work

Heat Work

Refrigeration system Purpose

- Transport a quantity of heat from an area with low temperature (cold side) to an area of higher temperature (hot side).
- Purpose (cold side): Food production, cold or freezing storage, air conditioning, cooling of machinery etc.
- Cooling source (hot side): Outdoor air or heat recovery (heating of buildings or hot water).

Heat pump Purpose

- Transport a quantity of heat from an area with low temperature (cold side) to an area of higher temperature (hot side).
- Purpose (hot side): Heating of buildings or hot water
- Heating source (cold side): Outdoor air, ground, sea/lake or waste heat from industrial processes

Refrigeration principles

There are a number of different principles which can be used for refrigeration:

- Absorption cooling
- Peltier element
- Gas compression, cooling and expansion (in aeroplanes)
- Steam ejector cooling
- Compression refrigeration system

This course will focus solely on vapour compression refrigeration systems.

Energy balance

1st law of thermodynamics (law of conservation of energy):

The total energy of an <u>isolated</u> system is constant. Energy can be transformed from one form to another, but..... energy cannot be created or destroyed.

For a stationary system:

$$\Sigma E_{in} - \Sigma E_{out} - \Sigma E_{storage} = 0$$

Energy balance methodology

- Draw a simple model of the system using standard symbols
- Add numbers to identify the different parts of the process
- Add know information on eg. massflow, temperatures, pressure to the drawing
- Draw Control Volumes for the total system and parts of the system to be analyzed.
- Find enthalpies for latent processes: Refrigerants (log P h-diagram), air with condensation or humidification (hx-diagram). Find c_p values for sensible processes: Water, dry air and other substances (tables)
- Calculate energy flow in and out of each control volume using energy balance equations.

Exercise Energy Balance 1

