EA. Parcial grupos. Grado en Matemáticas

27 de abril de 2016

- 1. (4 puntos) Teoría:
 - a) (0,25 puntos) Sean G un grupo y $a \in G$. Definimos la función $f_a : G \longrightarrow G$ como $f_a(b) := ab$. Demuestra que f es una biyección.
 - b) (0.25 puntos) ¿En qué casos es f_a un isomorfismo de grupos?
 - $c) \ (0,\!5$ puntos) Sean G un grupo
yH un subgrupo de G. Definimos en
 G la siguiente relación:

$$x \equiv y \mod H \iff x^{-1}y \in H$$

Demuestra que esta relación es de equivalencia.

- d) (0,25 puntos) Define el índice de H en G.
- e) (2 puntos) Enuncia y demuestra el teorema de Lagrange para grupos finitos. Puedes utilizar los apartados anteriores.
- f) (0,25 puntos) Dados G y un elemento $a \in G$, define ord(a) y ord(G).
- g) (0,5 puntos) Usa el teorema de Lagrange para demostrar que si G es un grupo finito y $a \in G$ entonces ord(a) es un divisor de ord(G).
- 2. (5 puntos) Considera el grupo $G = D_8 \cap A_8$, donde D_8 es el grupo diedral y A_8 es el grupo alternado.
 - a) (1 punto) Halla razonadamente todos los elementos de G. Escríbelos como permutaciones de S_8 utilizando la notación de ciclos.
 - b) (1 punto) Halla todos los subgrupos cíclicos de G.
 - c) (0,5 puntos) Determina cuáles de estos subgrupos son normales en G.
 - d) (0,5 puntos) Para cada uno de los subgrupos normales que hayas encontrado, estudia el cociente de G por ese subgrupo y determina a qué grupo que hayamos estudiado es isomorfo.
 - e) (1 punto) Considera la acción natural del grupo G sobre $B = \{1, 2, 3, 4, 5, 6, 7, 8\}$ (cada permutación actúa sobre un elemento de B ya que es una función de B en B). Halla las órbitas y los estabilizadores de todos los elementos de B.
 - <u>Pista</u>: Puedes hacer perfectamente el ejercicio considerando los elementos de G como permutaciones. Pero verlos como elementos de D_8 , es decir, como transformaciones del plano que dejan invariante un octógono regular, te puede ayudar.
 - f) (Extra: 1 punto) ¿Puedes encontrar un subgrupo H de G que cumpla que la acción de H sobre B parte B en 3 órbitas distintas?
- 3. (2 puntos) Sean G un grupo, H < G y K < G, es decir, H y K subgrupos de G. De las siguientes afirmaciones 2 son ciertas y 2 son falsas. Di cuáles son las ciertas y demuéstralas. Di cuáles son las falsas y encuentra un contraejemplo.
 - a) $H \cup K < G$
 - b) $H \cap K < G$
 - $c) \ H \triangleleft G \Rightarrow H \cap K \triangleleft G$
 - $d) \ H \triangleleft G, \ K \triangleleft G \ \Rightarrow \ H \cap K \triangleleft G$

Nota: $H \triangleleft G$ quiere decir que H es subgrupo normal de G.