1.- Una determinada empresa tiene 60 empleados. La distribución de edades de sus empleados viene dada por la siguiente tabla:

\mathbf{L}_{i-1} - \mathbf{L}_{i}	ni	Ni	$\mathbf{F_{i}}$	h _i
18 - L ₁	9	9	_	1.5
L ₁ - 26	-	-	0.35	-
26 - 32	-	-	0.65	-
32 - 50	-	-	-	-
50 - 56	-	-	-	1

- a) Completar la tabla anterior y calcular L₁.
- b) Obtener el histograma y el polígono acumulativo de frecuencias absolutas.

Para calcular
$$L_1$$
 tenemos en cuenta que $h_i = \frac{n_i}{l_i}$ luego $l_1 = \frac{n_1}{h_1} = \frac{9}{1.5} = 6$

Por tanto
$$L_1 - 18 = 6 \implies L_1 = 18 + 6 = 24$$

$$F_1 = \frac{N_1}{N} = \frac{9}{60} = 0.15$$
 $F_2 = \frac{N_2}{N} \Rightarrow N_2 = F_2 N = 0.35.60 = 21$

$$n_2 = N_2 - N_1 = 21 - 9 = 12$$
 $h_2 = \frac{n_2}{l_2} = \frac{12}{2} = 6$

$$F_3 = \frac{N_3}{N} \Rightarrow N_3 = F_3 N = 0,65.60 = 39$$
 $n_3 = N_3 - N_2 = 39 - 21 = 18$

$$h_3 = \frac{n_3}{l_3} = \frac{18}{6} = 3$$

$$F_5 = 1$$
 $h_5 = \frac{n_5}{l_5} \Rightarrow n_5 = l_5 h_5 = 6.1 = 6$

$$N_4 = N_5 - n_5 = 60 - 6 = 54$$
 $n_4 = N_4 - N_3 = 54 - 39 = 15$

$$F_4 = \frac{N_4}{N} = \frac{54}{60} = 0.9 \ h_4 = \frac{n_4}{l_4} = \frac{15}{18} = 0.83$$

L_{i-1} - L_i	ni	Ni	\mathbb{F}_{i}	hi
18 - 24	9	9	0,15	1.5
24 - 26	12	21	0.35	6
26 - 32	18	39	0.65	3
32 - 50	15	54	0,90	0,83
50 - 56	6	60	1	1

2.- Las puntuaciones obtenidas por los 55 alumnos de una clase son:

$\mathbf{X}_{\mathbf{i}}$	0	1	2	3	4	5	6	7	8	9	10
$\mathbf{n_i}$	2	3	5	10	7	6	5	8	5	3	1

- a) Obtener las frecuencias absolutas, las frecuencias relativas y las frecuencias acumuladas absolutas y relativas.
- b) Represente gráficamente las distribuciones de frecuencias absolutas.
- c) Obtener el porcentaje de alumnos con notas menores o iguales a 6.
- d) Obtener el porcentaje de alumnos con sobresaliente (más de 8).

Xi	0	1	2	3	4	5	6	7	8	9	10
ni	2	3	5	10	7	6	5	8	5	3	1
Ni	2	5	10	20	27	33	38	46	51	54	55
fi	0,036	0,055	0,091	0,182	0,127	0,109	0,091	0,145	0,091	0,055	0
Fi	0,036	0,091	0,182	0,364	0,491	0,6	0,691	0,836	0,927	0,982	1

- c) 69,1%
- d) 100-92,7=7,3%

3.- En la tabla siguiente se recogen las puntuaciones obtenidas por 100 universitarios:

п т	Número de
$[L_{i-1}, L_i)$	alumnos
[15, 20)	2
[20,25)	8
[25, 30)	9
[30, 35)	19
[35,40)	17
[40,45)	18
[45, 50)	4
[50,55)	12
[55, 60)	3
[60,65)	5
[65, 70]	3

- a) Obtener las distintas distribuciones de frecuencias
- b) ¿Qué porcentaje de alumnos obtiene un resultado de 50 puntos como mínimo?
- c) ¿Qué porcentaje de alumnos obtiene un resultado de 30 puntos como máximo?

a)

[L _{i-1} , L _i)	ni	fi	Ni	Fi
[15, 20)	2	0,02	2	0,02
[20,25)	8	0,08	10	0,1
[25, 30)	9	0,09	19	0,19
[30, 35)	19	0,19	38	0,38
[35,40)	17	0,17	55	0,55
[40,45)	18	0,18	73	0,73
[45, 50)	4	0,04	77	0,77
[50,55)	12	0,12	89	0,89
[55, 60)	3	0,03	92	0,92
[60,65)	5	0,05	97	0,97
[65, 70]	3	0,03	100	1

b) 1-0,77=0,23

c) 0,19

4.- El número de unidades de un determinado producto adquiridas anualmente por 110 consumidores entrevistados se distribuye así:

Número	Número de
de	consumidores
unidades	
20-30	25
30-40	20
40-50	35
50-60	15
60-100	15

- a) ¿Cuál es el número medio de unidades adquiridas por estos consumidores? Calcule alguna medida de dispersión para las observaciones.
- b) ¿Cuál es el número mínimo de unidades adquiridas por el 25% de consumidores que más unidades adquieren?
- c) ¿Cuál es el número máximo de unidades adquiridas por el 15% de consumidores que menos unidades adquieren?
- d) ¿Cuál es el número de unidades anuales más frecuentemente adquirido por los consumidores?
- a) Haciendo cálculos directos:

l _i	Xi	ni	n _i *x _i	n _i *x _i ²	N_i
[20,30)	25	25	625	15625	25
[30,40)	35	20	700	24500	45
[40,50)	45	35	1575	70875	80
[50,60)	55	15	825	45375	95
[60,100]	80	15	1200	96000	110
		_	4925	252375	

$$\bar{x} = \frac{\sum n_i x_i}{N} = \frac{4925}{110} = 44,77$$

$$s^2 = \frac{\sum n_i x_1^2}{N} - \bar{x}^2 = \frac{252375}{110} - 44,47^2 = 289,7235$$

$$s = \sqrt{289,7235} = 17,02 \quad CV = \frac{s}{\bar{x}} = \frac{17,02}{44,77} = 0,38$$

Tomando origen de trabajos y factor de escala:

l _i	Xi	ni	x _i -x ₀	$x'_{i}=(x_{i}-x_{0})/a$	n _i *x' _i	n _i *x' _i ²	Ni
[20,30)	25	25	-20	-4	-100	400	25
[30,40)	35	20	-10	-2	-40	80	45
[40,50)	45	35	0	0	0	0	80
[50,60)	55	15	10	2	30	60	95
[60,100]	80	15	35	7	105	735	110
	x ₀ =45		a=5		-5	1275	

$$\overline{x'} = \frac{\sum n_i x'_i}{N} = \frac{-5}{110} = -\frac{1}{22} \quad \overline{x} = a\overline{x'} + x_0 = -\frac{1}{22} 5 + 45 = 44,77$$

$$s^2 = \frac{\sum n_i x'_1^2}{N} - \overline{x'}^2 = \frac{1275}{110} - \left(-\frac{1}{22}\right)^2 = 11,5888$$

$$s^2 = a^2 s'^2 = 5^2.11,5888 = 289,72$$

b)
$$\frac{3N}{4} = \frac{3.110}{4} = 82,5 \Rightarrow Q_3 \in [50,60) \frac{15}{2,5} \frac{10}{x} = \frac{10.2,5}{15} = 1,67$$

$$Q_3 = L_I + x = 50 + 1,67 = 51,67$$

c)
$$\frac{15N}{100} = \frac{15.110}{100} = 16,5 \Rightarrow P_{15} \in [20,30) \frac{25}{16,5} = \frac{10.16,5}{25} = 6,6$$

$$P_{15} = L_I + x = 20 + 6.6 = 26.6$$

d)

li	ni	ai	hį
[20,30)	25	10	2,5
[30,40)	20	10	2
[40,50)	35	10	3,5
[50,60)	15	10	1,5
[60,100]	15	40	0,325

$$\widehat{x} = 45$$