

Tema 4: Espacios vectoriales

Curso 2016/2017

Cartagena99

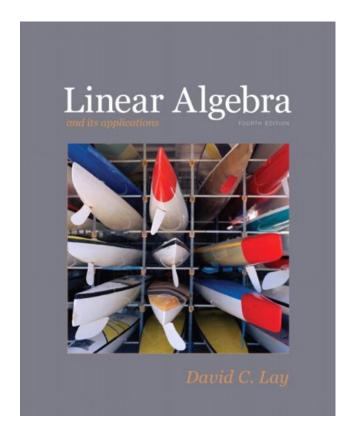
CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

LLAMA O ENVIA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Madrid

Referencias



Lay D. Linear algebra and its applications (4th ed).

Cartagena99

Chapter 4.6.
CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE
LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Índice de contenidos

- Espacio vectorial \mathbb{R}^n y sus subespacios
- Espacio Nulo y espacio Columna de una matriz
- Bases
- Espacio vectorial con el producto interior

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Espacio vectorial

Definición: Espacio vectorial

Un *espacio vectorial* es un conjunto no vacío, V, de objetos (llamados *vectores*) en el que definimos 2 operaciones: la suma entre vectores y la multiplicación por un escalar, y que $\forall \mathbf{u}, \mathbf{v}, \mathbf{w} \in V$ y $\forall c, d \in \mathbb{K}$ se verifica que:

- 1. $\mathbf{u} + \mathbf{v} \in V$
- 2. u + v = v + u
- 3. (u + v) + w = u + (v + w)
- 4. $\exists 0 \in V \mid u + 0 = u$
- 5. $\forall \mathbf{u} \in V \exists ! \mathbf{w} \in V \mid \mathbf{u} + \mathbf{w} = \mathbf{0} \ (normalmente \ escrito \ como \ \mathbf{w} = -\mathbf{u})$
- 6. $c\mathbf{v} \in V$
- 7. $c(\mathbf{u} + \mathbf{v}) = c\mathbf{u} + c\mathbf{v}$
- 8. $(c+d)\mathbf{u} = c\mathbf{u} + d\mathbf{u}$
- $0 \quad a(dii) (ad)ii$

Cartagena 99

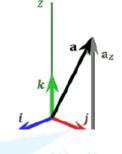
CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Espacio vectorial

Teorema: otras propiedades

- 11. $0\mathbf{u} = \mathbf{0}$
- 12. c**0** = **0**
- 13. $-\mathbf{u} = (-1)\mathbf{u}$

Ejemplo: \mathbb{R}^n



Cartagena99

 \mathbb{R}^n es un espacio vectorial de dimensión finita

para cualquier n. Igual que \mathbb{C}^n CLASES PARTICULARES, TUTORIAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Definición: Subespacio de Rⁿ

 $H \subseteq \mathbb{R}^n$ es un subespacio de \mathbb{R}^n si:

- **1. 0** ∈ *H*
- 2. $\forall \mathbf{u}, \mathbf{v} \in H$, $\mathbf{u} + \mathbf{v} \in H \rightarrow H$ está cerrado bajo la suma de vectores
- 3. $\forall \mathbf{u} \in H, \forall r \in \mathbb{R}, r\mathbf{u} \in H \rightarrow H$ está cerrado bajo la multiplicación por un escalar

Ejemplo: subespacios especiales

Los siguientes 2 conjuntos son subespacios de \mathbb{R}^n :

1.
$$H = \{0\}$$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo: Plano

Un plano está definido como: $H = \operatorname{Span} \{\mathbf{v}_1, \mathbf{v}_2\} = \{\mathbf{v} \in \mathbb{R}^n | \mathbf{v} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2\}$

Este plano es un subespacio de \mathbb{R}^n

Demostración

- 1. Demostrar $\mathbf{0} \in H \rightarrow \text{Si } \lambda_1 = \lambda_2 = 0$, entonces $\mathbf{v} = \mathbf{0}$
- 2. Demostrar $\mathbf{u} + \mathbf{v} \in H$ \Rightarrow $\mathbf{u} \in H \Rightarrow \mathbf{u} = \lambda_{1u}\mathbf{v}_1 + \lambda_{2u}\mathbf{v}_2$ $\mathbf{v} \in H \Rightarrow \mathbf{v} = \lambda_{1v}\mathbf{v}_1 + \lambda_{2v}\mathbf{v}_2$ $\mathbf{u} + \mathbf{v} = (\lambda_{1u}\mathbf{v}_1 + \lambda_{2u}\mathbf{v}_2) + (\lambda_{1v}\mathbf{v}_1 + \lambda_{2v}\mathbf{v}_2)$ $= (\lambda_{1u} + \lambda_{1v})\mathbf{v}_1 + (\lambda_{2u} + \lambda_{2v})\mathbf{v}_2 \in H$
- 3. Demostrar $r\mathbf{u} \in H \Rightarrow \mathbf{u} = \lambda_{1u}\mathbf{v}_1 + \lambda_{2u}\mathbf{v}_2$ $r\mathbf{u} = r(\lambda_{1u}\mathbf{v}_1 + \lambda_{2u}\mathbf{v}_2)$

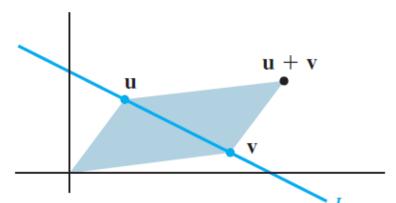
Cartagena99

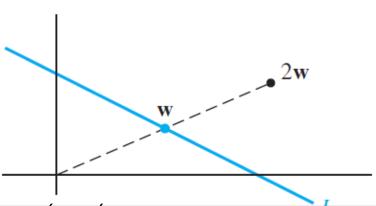
CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo: Recta que no pasa por el origen

Una recta (L) que no pasa por el origen, no es un subespacio, porque

- 1. **0** ∉ *L*
- 2. Si tomamos 2 puntos de la recta (\mathbf{u} y \mathbf{v}), $\mathbf{u} + \mathbf{v} \notin L$
- 3. Si tomamos un punto de la recta (w), 2w ∉ L





Cartagena99

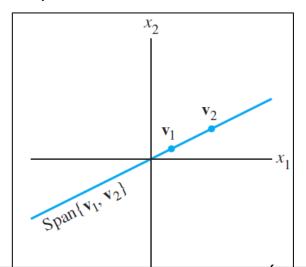
CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo: Recta que pasa por el origen

Consideremos v_1 y $v_2 = kv_1$. Entonces,

$$H = \operatorname{Span} \left\{ \mathbf{v}_1, \mathbf{v}_2 \right\} = \operatorname{Span} \left\{ \mathbf{v}_1 \right\}$$

es una recta. Es fácil de probar que esta recta es un subespacio de \mathbb{R}^n .



Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Subespacio vectorial

Ejemplo

 $H = \mathbb{R}^2$ no es un subespacio de \mathbb{R}^3 porque $\mathbb{R}^2 \not\subset \mathbb{R}^3$. Por ejemplo, el vector $\mathbf{u} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \in \mathbb{R}^2$, pero $\mathbf{u} \notin \mathbb{R}^3$.

Ejemplo

 $H = \mathbb{R}^2 \times \{0\}$ es un subespacio de \mathbb{R}^3 porque todos los vectores de H son de la forma $\mathbf{u} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$.

Es obvio que H "parece" \mathbb{R}^2 . Esta semejanza es llamada matemáticamente isomorfismo.

Ejemplo

Cartagena

Cualquier plano en 3D, que pase por el origen, es un subespacio \mathbb{R}^3 .

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

Sean $v_1, v_2 \in V$ dos vectores de un espacio vectorial V. El subconjunto

$$H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2\}$$

es un subespacio de V.

Demostración

Cualquier vector de H es de la forma $\mathbf{v} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2$ para cualquier $\lambda_1, \lambda_2 \in \mathbb{K}$.

- Demostración a) $0 \in H$ Simplemente estableciendo $\lambda_1 = \lambda_2 = 0$, tenemos $\mathbf{0} \in H$
- Demostración b) u + v ∈ H

Sean
$$\mathbf{u}, \mathbf{v} \in H \Rightarrow \begin{bmatrix} \mathbf{u} = \lambda_{1u}\mathbf{v}_1 + \lambda_{2u}\mathbf{v}_2 \\ \mathbf{v} = \lambda_{1v}\mathbf{v}_1 + \lambda_{2v}\mathbf{v}_2 \end{bmatrix} \Rightarrow$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo (...continuación)

• Demostración c) $c\mathbf{u} \in H$

Sea
$$\mathbf{u} \in H \Rightarrow$$

$$\mathbf{u} = \lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2 \Rightarrow c\mathbf{u} = c(\lambda_1 \mathbf{v}_1 + \lambda_2 \mathbf{v}_2) = c\lambda_1 \mathbf{v}_1 + c\lambda_2 \mathbf{v}_2 \in H$$

Teorema

Sean $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_p \in V$ p vectores de un espacio vectorial V. El subconjunto

$$H = \operatorname{Span}\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_p\}$$

es un subespacio de V.

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

Consideremos el conjunto de vectores de $\mathbb{R}^4 \supset H = \{(a-3b,b-a,a,b) \ \forall a,b \in \mathbb{R}\}$ ¿Es un subespacio vectorial?

Solución

Todos los vectores de H pueden ser escritos como

$$H \ni \mathbf{u} = \begin{bmatrix} a - 3b \\ b - a \\ a \\ b \end{bmatrix} = a \begin{bmatrix} 1 \\ -1 \\ 1 \\ 0 \end{bmatrix} + b \begin{bmatrix} -3 \\ 1 \\ 0 \\ 1 \end{bmatrix}$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

Sea
$$H = \left\{ (a,b,c,d) \in \mathbb{R}^4 \;\middle|\; \begin{array}{c} a-2b+5c=d\\ c-a=b \end{array} \right\}$$
. ¿Es H un subespacio vectorial de \mathbb{R}^4 ?

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

Sea
$$H = \left\{ (a, b, c, d) \in \mathbb{R}^4 \ \middle| \ \begin{array}{c} a - 2b + 5c = d \\ c - a = b \end{array} \right\}$$
. ¿Es H un subespacio vectorial de \mathbb{R}^4 ?

Solución

Podemos reescribir las condiciones de pertenencia a *H* como:

$$\begin{vmatrix} a-2b+5c=d \\ c-a=b \end{vmatrix} \Rightarrow \begin{pmatrix} 1 & -2 & 5 & -1 \\ -1 & -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \mathbf{0}$$

y, gracias al teorema previo, H es un subespacio vectorial de \mathbb{R}^4

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejercicios

- Tema 5_Enunciados de ejercicios I
 - Ejercicio 4.1.1
 - Ejercicio 4.1.2
 - Ejercicio 4.1.10
 - Ejercicio 4.1.12
 - Ejercicio 4.1.15

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Índice de contenidos

- Espacio vectorial \mathbb{R}^n y sus subespacios
- Espacio Nulo y espacio Columna de una matriz
- Bases
- Espacio vectorial con el producto interior

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Definición: Espacio columna de una matriz

Sea $A \in \mathcal{M}_{m \times n}$. Sean $a_i \in \mathbb{R}^m$ las columnas de la matriz A. El **espacio columna** de A se define como:

$$\operatorname{Col}\{A\} = \operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_2, ..., \mathbf{a}_n\} \subseteq \mathbb{R}^m$$

Teorema

 $Col\{A\}$ es un subespacio de \mathbb{R}^m

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

Encontrar una matriz A tal que $Col\{A\} = \{(6a - b, a + b, -7a) \ \forall a, b \in \mathbb{R}\}\$

Solución

Podemos expresar los puntos de Col{A} como:

$$\operatorname{Col}\{A\} \ni \mathbf{x} = \begin{pmatrix} 6a - b \\ a + b \\ -7a \end{pmatrix} = a \begin{pmatrix} 6 \\ 1 \\ -7 \end{pmatrix} + b \begin{pmatrix} -1 \\ 1 \\ 0 \end{pmatrix}$$

Por lo tanto, $Col\{A\}$ = Span{ (6, 1, -7), (-1, 1, 0) }. Es decir, estas deben ser las 2 columnas de A

Cartagena99

 $A = \begin{pmatrix} 6 & -1 \\ 1 & 1 \end{pmatrix}$ SES PARTICULARES, TUTORÍAS TÉCNI

CLASES PÂRTICULÁRES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

Sea
$$A = \begin{pmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$
 y $\mathbf{b} = \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix}$. Determinar si \mathbf{b} pertenece al Col $\{A\}$.

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

Sea
$$A = \begin{pmatrix} 1 & -3 & -4 \\ -4 & 6 & -2 \\ -3 & 7 & 6 \end{pmatrix}$$
 y $\mathbf{b} = \begin{pmatrix} 3 \\ 3 \\ -4 \end{pmatrix}$. Determinar si \mathbf{b} pertenece al Col $\{A\}$.

Solución:

Si $\mathbf{b} \in \text{Col}\{A\}$ deberán existir unos coeficientes \mathbf{x}_1 , \mathbf{x}_2 y \mathbf{x}_3 tales que:

$$\mathbf{b} = x_1 \mathbf{a_1} + x_2 \mathbf{a_2} + x_3 \mathbf{a_3}$$

Para encontrar esos coeficientes, resolvemos el sistema de ecuaciones Ax = b.

$$\begin{pmatrix} 1 & -3 & -4 & 3 \\ -4 & 6 & -2 & 3 \\ -3 & 7 & 6 & -4 \end{pmatrix} \sim \begin{pmatrix} 1 & -3 & -4 & 3 \\ 0 & -6 & -18 & 15 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

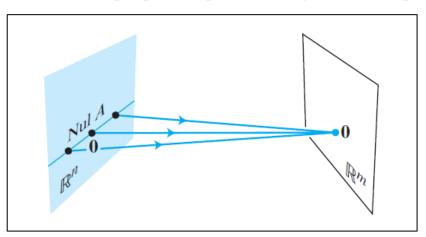
Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Definición: Espacio nulo de una matriz

Sea $A \in \mathcal{M}_{m \times n}$. El **espacio nulo** de A se define como:

$$\mathrm{Nul}\{A\} = \{\mathbf{v} \in \mathbb{R}^n | A\mathbf{v} = \mathbf{0}\}$$



Ejemplo

Cartagena99

CLÁSES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo (...continuación)

$$\begin{pmatrix} 1 & -3 & -2 \\ -5 & 9 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 5/2 & 0 \\ 0 & 1 & 3/2 & 0 \end{pmatrix}$$

Por lo tanto,

$$\text{Nul}\{A\} = \left\{ \left(-\frac{5}{2} x_3, -\frac{3}{2} x_3, x_3 \right) \ \forall x_3 \in \mathbb{R} \right\}$$

El ejemplo previo ($\mathbf{x} = (5, 3, -2)$) es el punto obtenido para $\mathbf{x}_3 = -2$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Teorema

 $Nul\{A\}$ es un subespacio vectorial de \mathbb{R}^n

Demostración

Es obvio que $Nul\{A\} \subseteq \mathbb{R}^n$ porque A tiene n columnas

Demostración a) 0 ∈ Nul{A}

$$A\mathbf{0}_n = \mathbf{0}_m \Rightarrow \mathbf{0}_n \in \text{Nul}\{A\}$$

Demostración b) u + v ∈ Nul{A}

Sean
$$\mathbf{u}, \mathbf{v} \in \mathrm{Nul}\{A\} \Rightarrow \begin{cases} A\mathbf{u} = \mathbf{0} \\ A\mathbf{v} = \mathbf{0} \end{cases} \Rightarrow$$

$$A(\mathbf{u} + \mathbf{v}) = A\mathbf{u} + A\mathbf{v} = \mathbf{0} + \mathbf{0} = \mathbf{0} \Rightarrow \mathbf{u} + \mathbf{v} \in \text{Nul}\{A\}$$

• Demostración c) cu ∈ Nul{A}

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Comparación entre espacio nulo y espacio columna

Contrast Between Nul A and Col A for an m x n Matrix A

Contrast Between Nul A and Col A for an m x n Matrix A	
Nul A	Col A
1 . Nul <i>A</i> is a subspace of \mathbb{R}^n .	1 . Col <i>A</i> is a subspace of \mathbb{R}^m .
2. Nul A is implicitly defined; that is, you are given only a condition $(A\mathbf{x} = 0)$ that vectors in Nul A must satisfy.	2. Col A is explicitly defined; that is, you are told how to build vectors in Col A.
 It takes time to find vectors in Nul A. Row operations on [A 0] are required. 	3 . It is easy to find vectors in Col A. The columns of A are displayed; others are formed from them.
4 . There is no obvious relation between Nul <i>A</i> and the entries in <i>A</i> .	4 . There is an obvious relation between Col <i>A</i> and the entries in <i>A</i> , since each column of <i>A</i> is in Col <i>A</i> .
5. A typical vector \mathbf{v} in Nul A has the property that $A\mathbf{v} = 0$.	5. A typical vector \mathbf{v} in Col A has the property that the equation $A\mathbf{x} = \mathbf{v}$ is consistent.
 Given a specific vector v, it is easy to tell if v is in Nul A. Just compute Av. 	 Given a specific vector v, it may take time to tell if v is in Col A. Row operations on [A v] are required.
7 Nt-1 ((0) if11 if theti	7 C-1 4

7 Null $A = \{0\}$ if and only if the equation $\frac{7}{4}$ Col $\frac{A}{4} = \mathbb{R}^m$ if and only if the equation

Cartagena99

LAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejercicios

- Tema 3_Enunciados de ejercicios VII
 - Ejercicio 2.8.1
 - Ejercicio 2.8.2
 - Ejercicio 2.8.5
 - Ejercicio 2.8.8
 - Ejercicio 2.8.10

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Índice de contenidos

- Espacio vectorial \mathbb{R}^n y sus subespacios
- Espacio Nulo y espacio Columna de una matriz
- Bases
- Espacio vectorial con el producto interior

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Definición: Base de un subespacio

Sea $H \subseteq \mathbb{R}^n$. El conjunto de vectores B es una base de H si:

- 1. Todos los vectores en *B* son linealmente independientes
- 2. $H = \operatorname{Span}\{B\}$

Base estándar de \mathbb{R}^n

Sean los vectores:

$$\mathbf{e}_1 = egin{pmatrix} 1 \ 0 \ 0 \ \dots \ 0 \end{pmatrix} \quad \mathbf{e}_2 = egin{pmatrix} 0 \ 1 \ 0 \ \dots \ 0 \end{pmatrix} \quad \mathbf{e}_3 = egin{pmatrix} 0 \ 0 \ 1 \ \dots \ 0 \end{pmatrix} \quad \dots \quad \mathbf{e}_n = egin{pmatrix} 0 \ 0 \ 0 \ \dots \ 1 \end{pmatrix}$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

Sea $H = \text{Span}\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}$ con $\mathbf{v}_1 = (0, 2, -1), \mathbf{v}_2 = (2, 2, 0), \mathbf{v}_3 = (6, 16, -5)$. Encontrar una base para H

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

Sea $H = \text{Span}\{ \mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3 \}$ con $\mathbf{v}_1 = (0, 2, -1), \mathbf{v}_2 = (2, 2, 0), \mathbf{v}_3 = (6, 16, -5).$ Encontrar una base para H

Solución

Todos los vectores en H son de la forma:

$$H \ni \mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 \mathbf{v}_3$$

Nos damos cuenta que $\mathbf{v}_3 = 5\mathbf{v}_1 + 3\mathbf{v}_2$, por lo tanto, \mathbf{v}_3 es redundante:

$$H \ni \mathbf{x} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + c_3 (5 \mathbf{v}_1 + 3 \mathbf{v}_2)$$

= $(c_1 + 5c_3) \mathbf{v}_1 + (c_2 + 3c_3) \mathbf{v}_2$
= $c'_1 \mathbf{v}_1 + c'_2 \mathbf{v}_2$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

- $\{(1,0,0), (2,3,0)\}$ es un conjunto de 2 vectores linealmente **independientes**. Pero no pueden generar \mathbb{R}^3 porque para eso, necesitamos 3 vectores
- { (1,0,0), (2,3,0), (4,5,6) } es un conjunto de 3 vectores linealmente independientes que generan \mathbb{R}^3 , por lo tanto, es una base de \mathbb{R}^3
- { (1,0,0), (2,3,0), (4,5,6), (7,8,9) } es un conjunto de 4 vectores linealmente dependientes que generan \mathbb{R}^3 , pero que no son una base

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

Sea
$$A = \begin{pmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{pmatrix}$$
. Resolvemos el sistema de ecuaciones $A\mathbf{x} = \mathbf{0}$:

$$(A|\mathbf{0}) \sim \left(\begin{array}{ccc|ccc|c} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{array} \right)$$

En azul se muestran las columnas pivote, de las cuales hemos aprendido que:

$$x_{1} = 2x_{2} + x_{4} - 3x_{5} x_{3} = -2x_{4} + 2x_{5} \Rightarrow \text{Nul}\{A\} \ni \mathbf{x} = \begin{pmatrix} 2x_{2} + x_{4} - 3x_{5} \\ x_{2} \\ -2x_{4} + 2x_{5} \\ x_{4} \\ x_{5} \end{pmatrix}$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNÍCAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo (...continuación)

$$\operatorname{Nul}\{A\} \ni \mathbf{x} = \begin{pmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \\ x_4 \\ x_5 \end{pmatrix} = x_2 \begin{pmatrix} 2 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} + x_4 \begin{pmatrix} 1 \\ 0 \\ -2 \\ 1 \\ 0 \end{pmatrix} + x_5 \begin{pmatrix} -3 \\ 0 \\ 2 \\ 0 \\ 1 \end{pmatrix}$$

Finalmente, la base del **Nul{A}** es { (2,1,0,0,0), (1,0,-2,1,0), (-3,0,2,0,1) }:

$$\operatorname{Nul}\{A\} = \operatorname{Span}\left\{ \begin{pmatrix} 2\\1\\0\\0\\0 \end{pmatrix}, \begin{pmatrix} 1\\0\\-2\\1\\0 \end{pmatrix}, \begin{pmatrix} -3\\0\\2\\0\\1 \end{pmatrix} \right\}$$

Cartagena99

CLASES PARTICULÀRÉS, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

Si consideramos
$$A = \begin{pmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{pmatrix}$$
 del ejemplo anterior, tenemos que :

$$A \sim \left(\begin{array}{cccc} 1 & -2 & 0 & -1 & 3 \\ 0 & 0 & 1 & 2 & -2 \\ 0 & 0 & 0 & 0 & 0 \end{array}\right) = B$$

Si llamamos *B* a la matriz anterior, entonces la columnas no-pivote podemos escribirlas como una combinación lineal de las columnas pivote:

$$\begin{array}{rcl}
 \mathbf{b_2} & = & -2\mathbf{b_1} \\
 \mathbf{b_4} & = & -\mathbf{b_1} + 2\mathbf{b_3}
 \end{array}$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo (...continuación)

Dado que las operaciones por filas no cambian la dependencia lineal entre las columnas de una matriz, podemos derivar las mismas relaciones para la matriz A:

$$\mathbf{a}_2 = -2\mathbf{a}_1
 \mathbf{a}_4 = -\mathbf{a}_1 + 2\mathbf{a}_3
 \mathbf{a}_5 = 3\mathbf{a}_1 - 2\mathbf{a}_3$$

Finalmente, la base del Col $\{A\}$ es $\{a_1, a_3\}$.

$$\operatorname{Col}\{A\} = \operatorname{Span}\{\mathbf{a}_1, \mathbf{a}_3\} = \operatorname{Span}\left\{ \begin{pmatrix} -3\\1\\2 \end{pmatrix}, \begin{pmatrix} -1\\2\\5 \end{pmatrix} \right\}$$

Teorema

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejemplo

Encontrar una base para el espacio nulo de
$$A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Bases para Nul(A) y Col(A)

Ejemplo

Encontrar una base para el espacio nulo de $A = \begin{bmatrix} -3 & 6 & -1 & 1 & -7 \\ 1 & -2 & 2 & 3 & -1 \\ 2 & -4 & 5 & 8 & -4 \end{bmatrix}$

Solución

El espacio nulo de A son todos aquellos vectores que satisfacen Ax = 0.

$$\begin{bmatrix} A & \mathbf{0} \end{bmatrix} \sim \begin{bmatrix} 1 & -2 & 0 & -1 & 3 & 0 \\ 0 & 0 & 1 & 2 & -2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}, \quad \begin{aligned} x_1 - 2x_2 & - & x_4 + 3x_5 = 0 \\ x_3 + 2x_4 - 2x_5 = 0 \\ 0 = 0 \end{aligned}$$

Por lo que, la solución general es (en forma vectorial paramétrica):

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2x_2 + x_4 - 3x_5 \\ x_2 \\ -2x_4 + 2x_5 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 0 \end{bmatrix} + x_4 \begin{bmatrix} 1 \\ 0 \\ -2 \end{bmatrix} + x_5 \begin{bmatrix} 2 \\ 2 \end{bmatrix} = x_2\mathbf{u} + x_4\mathbf{v} + x_5\mathbf{w}$$

$$\begin{bmatrix} \text{CLASES PARTICULARES, TUTORIAS TÉCNICAS ONLINE} \\ \text{LAMA O ENVIA WHATSAPP: 689 45 44 70} \\ \text{ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS} \\ \text{CALL OR WHATSAPP: 689 45 44 70} \end{bmatrix}$$

Bases para Nul{A} y Col{A}

Ejemplo (...continuación)

El conjunto $B = \{ \mathbf{u}, \mathbf{v}, \mathbf{w} \} = \{ (2,1,0,0,0), (1,0,-2,1,0), (-3,0,2,0,1) \}$ es una base de **Nul{A}**.

Por construcción, estos vectores son linealmente independientes.

Ejemplo: Espacio Nulo y sistemas de ecuaciones

Consideremos
$$A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

- {e₃} es una base del Nul{A}
- \triangleright Consideremos **b** = (7, 3, 0). La solución general de Ax = b es de la forma:

$$\mathbf{x} = \mathbf{x_0} + \mathbf{x}_{Nul}$$

donde x_0 es una solución de Ax = b que no pertenece al $Nul\{A\}$ y x_{nul} pertenece al

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Bases para Nul{A} y Col{A}

Ejemplo

Encontrar una base para el espacio columna de $B = \begin{bmatrix} 1 & 0 & -3 & 5 & 0 \\ 0 & 1 & 2 & -1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$

Solución

De las columnas que no tienen pivote de la matriz *B*, sabemos que:

$$\mathbf{b}_3 = -3\mathbf{b}_1 + 2\mathbf{b}_2$$
$$\mathbf{b}_4 = 5\mathbf{b}_1 - \mathbf{b}_2$$

Entonces,
$$\operatorname{Col}\{B\} = \left\{ \mathbf{v} \in \mathbb{R}^4 \middle| \mathbf{v} = x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + x_3 \mathbf{b}_3 + x_4 \mathbf{b}_4 + x_5 \mathbf{b}_5 \right\}$$

$$= \left\{ \mathbf{v} \in \mathbb{R}^4 \middle| \begin{array}{ccc} \mathbf{v} &= & x_1 \mathbf{b}_1 + x_2 \mathbf{b}_2 + x_3 (-3 \mathbf{b}_1 + 2 \mathbf{b}_2) + \\ & & x_4 (5 \mathbf{b}_1 - \mathbf{b}_2) + x_5 \mathbf{b}_5 \end{array} \right\}$$

$$= \left\{ \mathbf{v} \in \mathbb{R}^4 \middle| \mathbf{v} = x_1' \mathbf{b}_1 + x_2' \mathbf{b}_2 + x_5 \mathbf{b}_5 \right\}$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Bases para Nul{A} y Col{A}

Ejemplo

Encontrar una base para el espacio columna de $A = \begin{bmatrix} 1 & 3 & 3 & 2 & -9 \\ -2 & -2 & 2 & -8 & 2 \\ 2 & 3 & 0 & 7 & 1 \\ 3 & 4 & -1 & 11 & -8 \end{bmatrix}$

Solución

Resulta que $A \sim B$ (B del ejemplo anterior). Dado que las operaciones por filas no afectan la relaciones de independencia lineal entre las columnas de la matriz, deberíamos tener que:

$$\mathbf{a}_3 = -3\mathbf{a}_1 + 2\mathbf{a}_2$$
$$\mathbf{a}_4 = 5\mathbf{a}_1 - \mathbf{a}_2$$

Y, por lo tanto, $Basis\{Col\{A\}\} = \{a_1, a_2, a_5\}$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Base para subespacio

Ejemplo

Sea $H = \left\{ (a, b, c, d) \in \mathbb{R}^4 \mid \begin{array}{c} a - 2b + 5c = d \\ c - a = b \end{array} \right\}$. Encontrar una base para este subespacio.

Podemos reescribir las condiciones de pertenencia a *H* como:

$$\begin{vmatrix} a-2b+5c=d \\ c-a=b \end{vmatrix} \Rightarrow \begin{pmatrix} 1 & -2 & 5 & -1 \\ -1 & -1 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \\ d \end{pmatrix} = \mathbf{0}$$

$$\begin{pmatrix} 1 & -2 & 5 & -1 \\ -1 & -1 & 1 & 0 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 1 & -1/3 \\ 0 & 1 & -2 & 1/3 \end{pmatrix}$$

Las soluciones de Ax = 0 son todos los puntos de la forma:

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} \frac{1}{3}d - c \\ 2c - \frac{1}{3}d \end{pmatrix} = c\begin{pmatrix} -1 \\ 2 \\ 1 \end{pmatrix} + d\begin{pmatrix} \frac{1}{3} \\ -\frac{1}{3} \end{pmatrix}$$

Cartagena99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejercicios

- Tema 5_Enunciados de ejercicios III
 - Ejercicio 4.3.1
 - Ejercicio 4.3.8
 - Ejercicio 4.3.11
 - Ejercicio 4.3.12
 - Ejercicio 4.3.13

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Índice de contenidos

- Espacio vectorial \mathbb{R}^n y sus subespacios
- Espacio Nulo y espacio Columna de una matriz
- Bases
- Espacio vectorial con el producto interior

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Espacio vectorial con el producto interior

Definición: Producto interior

El producto interior sobre un espacio vectorial V, es la función <u,v> que asigna un número real a cada par de vectores u y v, y cumple:

1.
$$< u, v > = < v, u >$$

2.
$$\langle u + v, w \rangle = \langle u, w \rangle + \langle v, w \rangle$$

$$3. < cu, v > = c < u, v >$$

$$4. < u, u > \ge 0$$
 $y < u, u > = 0$ si y $solo$ si $u = 0$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Espacio vectorial con el producto interior

Ejemplo

Demostrar que la ecuación $< u, v > = 4u_1v_1 + 5u_2v_2$ es un producto interior.

Demostración:

- 1. $\langle u, v \rangle = 4u_1v_1 + 5u_2v_2 = \langle v, u \rangle$
- 2. $\langle u + v, w \rangle = 4(u_1 + v_1)w_1 + 5(u_2 + v_2)w_2 = 4u_1w_1 + 5u_2w_2 + 4v_1w_1 + 5v_2w_2 = \langle u, w \rangle + \langle v, w \rangle$
- 3. $\langle cu, v \rangle = 4cu_1v_1 + 5cu_2v_2 = c \cdot (4u_1v_1 + 5u_2v_2) = c \langle u, v \rangle$
- 4. $\langle u, u \rangle = 4u_1^2 + 5u_2^2 \ge 0$ $y \langle u, u \rangle = 0$ si y solo si $u_1 = 0$ y $u_2 = 0$ (u = 0)

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Espacio vectorial con el producto interior

Ejemplo

Demostrar que la ecuación $< u, v > = u_1v_1 + 2u_1v_2 + 2u_2v_1 + 3u_2v_2$ es un producto interior.

Demostración:

Demostración analoga a la de ejemplo anterior

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Espacio vectorial Rⁿ con el producto escalar

• Dados dos vectores \mathbf{v} , $\mathbf{w} \in \mathbb{R}^n$, el producto escalar entre ambos se define como:

$$\langle \mathbf{v}, \mathbf{w} \rangle = \mathbf{v} \cdot \mathbf{w} \triangleq \mathbf{v}^T \mathbf{w} = \sum_{i=1}^n \mathbf{v}_i \mathbf{w}_i = \mathbf{v}_1 \mathbf{w}_1 + \mathbf{v}_2 \mathbf{w}_2 + \dots + \mathbf{v}_n \mathbf{w}_n$$

 Este producto cumple las propiedades 1-4 de producto interior (demostración analoga a la de ejemplo anterior)

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

Ejercicios

- Tema 5_Enunciados de ejercicios IV
 - Ejercicio 6.7.1
 - Ejercicio 6.7.13
 - Ejercicio 6.7.15

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70