PROBLEMAS DE MÉTODOS MATEMÁTICOS III

 1^{0} **A** y 1^{0} **B**

TEMA 2 - Cálculo-

HOJA
$$N^{0}5$$
 $(07 - 03 - 2017)$

29. Halla la derivada direccional de la función en el punto P en la dirección de \underline{v} .

a)
$$f(x,y) = xy$$
 $P = (2,3), y = \mathbf{i} + \mathbf{j}$

b)
$$g(x,y) = \sqrt{x^2 + y^2}$$
 $P = (3,4), \ \underline{v} = 3\mathbf{i} - 4\mathbf{j}$

c)
$$h(x,y) = e^x \text{seny}$$
 $P = (1, \frac{\pi}{2}), \ \underline{y} = -\mathbf{i}$

30. Halla la derivada direccional de la función en la dirección $\mathbf{u} = \cos \alpha \mathbf{i} + \sin \alpha \mathbf{j}$

$$a) f(x,y) = x^2 + y^2 \qquad \alpha = \frac{\pi}{4}$$

$$b) f(x,y) = \operatorname{sen}(2x - y) \quad \alpha = -\frac{\pi}{3}$$

31. Halla el gradiente de las funciones:

$$a) f(x,y) = 3xy + x^3$$

b)
$$g(x,y) = x^2y^2 + 1 + x + y$$

32. Calcula el gradiente de la función en el punto indicado

a)
$$f(x,y) = x^2 - 3xy + y^2$$
 $P = (4,2)$

$$b) f(x,y) = x \operatorname{tg} y \qquad P = (2, \frac{\pi}{4})$$

c)
$$f(x,y) = \ln \sqrt[3]{x^2 + y^2}$$
 $P = (1,2)$

33. Halla las ecuaciones de las rectas normal y tangente en el punto indicado

a)
$$x^2 + xy + y^2 = 3$$
 $P = (-1, -1)$

$$P = (-1, -1)$$

b)
$$(x^2 + y^2)^2 = 9(x^2 - y^2)$$
 $P = (\sqrt{2}, 1)$

c)
$$xy^2 - 2x^2 + y + 5x = 6$$
 $P = (4,2)$

34. Halla una ecuación para el plano tangente en el punto dado

a)
$$g(x,y) = x^2 - y^2$$
 $P = (5,4,9)$

b)
$$z = e^{x} (sen y + 1)$$
 $P = (0, \frac{\pi}{2}, 2)$

c)
$$xy^2 + 3x - z^2 = 4$$
 $P = (2, 1, -2)$

PROBLEMAS DE MÉTODOS MATEMÁTICOS III

 1^{0} **A** y 1^{0} **B**

TEMA 2 -Cálculo-

HOJA
$$N^{0}6$$
 $(07 - 03 - 2017)$

- **35**. Usa multiplicadores de Lagrange para halla los extremos indicados, se consideran en todos los casos x, y > 0.
 - a) Maximiza f(x, y) = 2x + 2xy + y con la condición 2x + y = 100
 - b) Maximiza $f(x,y) = x^2 + y^2$ con la condición x + y 4 = 0
 - c) Maximiza $f(x,y) = x^2 y^2$ con la condición $y x^2 = 0$
- **36**. Utiliza el método de los multiplicadores de Lagrange para evaluar los extremos con la condición dada

a)
$$f(x,y) = x + 3y$$
 con la condición $x^2 + y^2 = 1$

b)
$$f(x,y) = xy$$
 con la condición $x^2 + y^2 - 2 = 0$

c)
$$f(x,y) = x^3y$$
 con la condición $\sqrt{y} + \sqrt{x} = 1$

- 37. Calcula el área máxima de un triángulo rectángulo cuyo perímetro es de 4 unidades.
- **38**. Halla el valor máximo de $f(x, y, z) = \sqrt[3]{xyz}$ en el plano x + y + z = k.
- **39**. Minimiza xy^2 sobre la circunferencia unidad.
- **40**. Minimiza *xyz* sobre la esfera unidad.
- **41**. Haz máxima v mínima xy sobre la elipse $b^2x^2 + a^2y^2 = a^2b^2$.
- **42**. (**Ex**.) Dada la función $f(x, y) = y^4 4xy + 2x^2 4$. Se pide:
- a) (1,25 ptos.) Encuentra los **puntos críticos**.
- b) (1,25 ptos.) Clasificalos.
- **43**. (Ex) Encuentra los **extremos condicionados** de la función $f(x,y) = x^2y \cos y > 0$ que verifiquen $2x^2 + y^2 = 3$