Hoja de Problemas $9^{\frac{3}{4}}$

Decidir de forma razonada si las siguientes afirmaciones son verdaderas o falsas

- 1. Un sistema de ecuaciones lineales con m ecuaciones y n incógnitas con m > n siempre tiene solución.
- 2. Consideremos un sistema de m ecuaciones con n incógnitas

$$A\left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right) = \left(\begin{array}{c} b_1\\ \vdots\\ b_m \end{array}\right)$$

con A una matriz $m \times n$. Si $s_1 = (\alpha_1, \dots, \alpha_n)$ y $s_2 = (\beta_1, \dots, \beta_n)$ son dos soluciones de (*), entonces $s_1 - s_2$ es solución del sistema homogéneo asociado:

$$A\left(\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right) = \left(\begin{array}{c} 0\\ \vdots\\ 0 \end{array}\right)$$

- 3. Sean $\mathcal{B}_1 = \{u_1, u_2, u_3\}$ y $\mathcal{B}_2 = \{u_1, u_1 + u_2, u_1 + u_2 + u_3\}$ dos bases del \mathbb{R} -espacio vectorial $V = \mathbb{R}^3$. Entonces las coordenadas del vector $w_1 = u_1 u_2 + u_3$ en la base \mathcal{B}_2 son (2, -2, 1).
- 4. Sea E un \mathbb{K} -espacio vectorial, y $\{v_1, v_2, \ldots, v_{k-1}, v_k\} \subset E$ un sistema de vectores linealmente independientes. Si v es un vector de E con $v \notin \langle v_1, v_2, \ldots, v_{k-1} \rangle$, entonces existe un escalar $\lambda \in \mathbb{K}$ tal que $v = \lambda v_k$.
- 5. Para cualesquiera tres subespacios F, G y H de un espacio vectorial E se tiene que

$$F \cap (G+H) \supset (F \cap G) + (F \cap H)$$
.

- 6. Sean $\mathcal{B}_1 = \{u_1, u_2, u_3\}$ y $\mathcal{B}_2 = \{u_1, u_1 u_2, u_1 u_2 u_3\}$ dos bases del \mathbb{R} -espacio vectorial $V = \mathbb{R}^3$. Entonces las coordenadas del vector $w_1 = 2u_1 + u_2 u_3$ en la base \mathcal{B}_2 son (3, -2, 1).
- 7. Si la aplicación lineal $T: \mathbb{R}^6 \to \mathbb{R}^5$ es sobreyectiva, entonces su núcleo tiene dimensión 1
- 8. Supongamos que $\{u, v\}$ es una base de \mathbb{R}^2 . Entonces $\{2u + v, u 3v\}$ es también una base de \mathbb{R}^2 .
- 9. Sea E un \mathbb{K} -espacio vectorial de dimensión n, y $F \subset E$ un subespacio vectorial de dimensión n-1. Si $v_1, v_2 \in E$ son dos vectores con $v_1, v_2 \notin F$, entonces existe un escalar $\lambda \in \mathbb{K}$ tal que $v_1 = \lambda v_2$.
- 10. Para cualesquiera tres endomorfismos f, g y h de un espacio vectorial E se verifica que $\det(f \circ (a + b)) = \det(f \circ a) + \det(f \circ b)$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

- 14. La aplicación $T: \mathbb{C} \to \mathbb{C}$, definida mediante $T(z) = (2+3i)\overline{z}$, es \mathbb{C} -lineal.
- 15. La aplicación $T: \mathbb{C} \to \mathbb{C}$, definida mediante $T(z) = (2+3i)\overline{z}$, es \mathbb{R} -lineal.
- 16. Si $f, g: V \to V$ son dos aplicaciones lineales, entonces $\operatorname{Im}(f+g) = \operatorname{Im} f + \operatorname{Im} g$.
- 17. Si en una matriz cuadrada reemplazamos la fila j por la fila j menos la fila i, el valor del determinante no cambia.
- 18. Si dos matrices cuadradas tienen la misma traza y el mismo determinante, entonces representan a la misma aplicación lineal, quizá con respecto a bases distintas.
- 19. Si $f, g: V \to V$ son dos aplicaciones lineales, entonces $\operatorname{Nuc}(f+g) = \operatorname{Nuc} f \cap \operatorname{Nuc} g$.
- 20. Existe una matriz 3×3 con cuatro autovalores complejos distintos.
- 21. En el espacio vectorial de todas las funciones continuas de \mathbb{R} en \mathbb{R} , las funciones $\cos(t)$, $\sin(t)$, $\sin(2t)$ son linealmente independientes.
- 22. Si $A, B \in \mathcal{M}_n(\mathbb{K})$, entonces $\det(A+B) = \det A + \det B$.
- 23. Si A una matriz cuadrada de tamaño $n \geq 2$ con entradas en un cuerpo \mathbb{K} y $\lambda \in \mathbb{K}$, entonces $\det(\lambda A) = \lambda \det A$.
- 24. Sean A y B dos matrices cuadradas de igual tamaño $n \ge 2$ con entradas en el mismo cuerpo \mathbb{K} . Entonces, para cualquier elemento $\lambda \in \mathbb{K}$ se tiene $\det(\lambda AB) = \det(\lambda BA)$.
- 25. Toda aplicación $f: \mathbb{R}^n \longrightarrow \mathbb{R}^n$ que lleva $\mathbf{0}$ en $\mathbf{0}$ es lineal.
- 26. Si V, W son espacios vectoriales sobre el mismo cuerpo y $f:V\longrightarrow W$ es una aplicación lineal inyectiva, entonces dim $V\leq\dim W$.
- 27. Si $f: V \to V$ es una aplicación lineal, entonces $\operatorname{Im} f + \operatorname{Nuc} f = V$.
- 28. Si $f, g: V \to V$ son dos aplicaciones lineales y $f \circ g = 0$, entonces $g \circ f = 0$.
- 29. Si $f \colon V \to V$ es una aplicación lineal y Nuc $f = \operatorname{Nuc} f^2$, entonces $\operatorname{Im} f^2 = \operatorname{Im} f$.
- 30. Todas las bases de un espacio vectorial tienen el mismo cardinal.
- 31. Todos los sistemas de ecuaciones lineales sobre un cuerpo K tienen infinitas soluciones no nulas si el número de ecuaciones es menor estrictamente que el número de variables.
- 32. Si $f: V \longrightarrow W$ es una aplicación lineal entre dos espacios vectoriales sobre el mismo cuerpo, \mathbb{K} , y $f(v_1)$, $f(v_2)$ y $f(v_3)$ son vectores de W linealmente independientes, entonces v_1, v_2 y v_3 son vectores de V linealmente independientes.
- 33. Sea E un espacio vectorial de dimensión finita sobre el cuerpo de los números reales \mathbb{R} . Si $f: E \longrightarrow E$ es un endomorfismo inyectivo, los polinomios mínimo y característico de f tienen el mismo grado.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70