Fundamentos de Matemáticas.

Nota sobre relaciones de congruencia

Fijado un número $n \neq 0$ de \mathbb{Z} , se dice que $x,y \in \mathbb{Z}$ son congruentes módulo n, y se escribe $x \approx y$, si x-y es divisible por n. La relación "x congruente con y módulo n" es una relación de equivalencia en \mathbb{Z} (cumple las propiedades reflexiva, simétrica y transitiva), y por tanto determina en \mathbb{Z} una partición, cuyos elementos, es decir, las clases de equivalencia, constituyen el conjunto cociente $\frac{\mathbb{Z}}{n\mathbb{Z}}$. Es obvio que al dividir por n cualquier elemento perteneciente a una determinada clase, el resto de la división es el mismo y por tanto podemos representar la clase por el resto. Por ejemplo, si n=4, la relación define en \mathbb{Z} cuatro clases que podemos representar por 0,1,2,3.

Además es claro que si $x \approx y$ y $x' \approx y'$ (mod n), entonces $x \pm x' \approx y \pm y'$ y $xx' \approx yy'$ (mod n), entonces, si representamos por C(x) la clase de equivalencia a la que pertenece x, resulta que

$$C(a) + C(b) = C(a+b)$$
 y $C(a) \cdot C(b) = C(ab)$

Como consecuencia de las propiedades del anillo $(\mathbb{Z}, +, \cdot)$ se obtiene que $(\mathbb{Z}/n, +, \cdot)$ es también un anillo con unidad y conmutativo.

Como ejemplo, consideremos el conjunto

$$\frac{\mathbb{Z}}{3\mathbb{Z}} = \{[0], [1], [2]\}$$

tiene tres elementos [0], [1], [2] que se pueden "identificar", cada uno, con los conjuntos de números que tienen igual resto al dividir por 3. Más específicamente como aquellos elementos cuya diferencia es multiplo de 3

•
$$[0] = \{3z : z \in \mathbb{Z}\} = \{0, \pm 3, \pm 6, \pm 9, \pm 12, \ldots\}$$

•
$$[1] = \{3z + 1 : z \in \mathbb{Z}\} = \{\pm 1, \pm 4, \pm 7, \pm 10, \pm 13, \pm 16, \dots\}$$

•
$$[2] = \{3z + 2 : z \in \mathbb{Z}\} = \{\pm 2, \pm 5, \pm 8, \pm 11, ...\}$$

Así la clase de equivalencia [0] se corresponden con aquellos números $\{0, 3, 6, 9, 12, ...\}$ que tienen resto 0 al dividir por 3. Como es una relación binaria de equivalencia 1 cualquier elemento del conjunto puede ser un representante del mismo. Es decir

$$[0] = [3] = [6] = \dots$$

$$[1] = [4] = [7] = \dots$$

Teniendo en cuenta esto, para dicho conjunto se puede definir una operación "suma" sin más que sumar directamente los representantes

$$[m] + [n] := [m+n],$$

ya que se puede probar que la suma de dos números que tiene el mismo resto que m y n al dividir por 3 tiene necesariamente el

¹véase curso cero

mismo resto que el número m+n . Un ejemplo

$$[1] + [2] = [1 + 2] = [3] = [0]$$

Lo que quiere decir que la suma de dos números que tiene resto 1 sumado por otro que tenga resto 2 al dividir por 3 da necesariamente un número que tiene resto 0 al dividir por 3. Por ejemplo 1+11=12.