
□ Introducción. Adsorbentes. Procesos □ Equilibrio. Isotermas □ Regeneración de adsorbentes □ Métodos de contacto □ Adsorción en lecho fijo ✓ Teoría del movimiento del soluto ✓ Modelo general de adsorción. Soluciones aproximadas ✓ Influencia de variables sobre curva de rotura □ Adsorción en tanque agitado

1. Introducción

- La adsorción generalmente está controlada por la transferencia de materia, aunque la de calor puede ser importante
- Es un fenómeno exotérmico, por lo que está desfavorecida por la temperatura
- La regeneración puede realizarse aumentando la temperatura, disminuyendo la concentración de adsorbible, o introduciendo un componente que se adsorba más
- La adsorción tiene numerosas aplicaciones: separación de mezclas, purificación de productos, descontaminación de corrientes fluidas
- Presenta ventajas con respecto a operaciones de separación más convencionales (rectificación, absorción, extracción) en los casos siguientes:

1. Introducción

➤ Separación de componentes con propiedades físicas muy parecidas. Por ejemplo, la separación de p-xileno de una mezcla de o-, m-, p-xilenos:

Compuesto	Punto de ebullición (°C)
p-xileno	138,4
m-xileno	139,1
o-xileno	144,4

Esta separación se lleva a cabo mediante cristalización o por adsorción en fase líquida sobre zeolitas (ZSM-5)

Separación de componentes que se encuentran en bajas concentraciones: el adsorbato suele ser una impureza o un contaminante

2. Adsorción física y química

- La adsorción se produce porque existen fuerzas de interacción entre el adsorbato y el adsorbente
- Existen dos tipos de adsorción en función del grado de interacción adsorbato-adsorbente:
- ➤ Adsorción física: se produce por fuerzas intermoleculares del tipo Van der Waals o puentes de hidrógeno
- ➤ Adsorción química o quimisorción: La fuerza de atracción es similar a la de un enlace químico
- Los aspectos relativos a la adsorción en que más diferencia existe entre ambos tipos son: a) calor de adsorción, b) especificidad adsorbato-centro de adsorción, c) fase adsorbida y d) desorción

2. Adsorción física y química

a) Calor de adsorción:

- En adsorción física es similar a los calores de vaporización (< 80 kJ/mol)
- En adsorción química se aproxima al valor de la entalpía de las reacciones químicas (80-400 kJ/mol)

b) Especificidad y activación:

- La adsorción física ocurre en todos los sistemas adsorbatoadsorbente
- La adsorción química sólo ocurre si se forma enlace químico
- La adsorción física es muy rápida, mientras que la quimisorción requiere superar una energía de activación

2. Adsorción física y química

c) Fase adsorbida:

- La adsorción física suele implicar la formación de multicapas
- La adsorción química sólo se producen en centros específicos

d) Desorción:

- Una molécula fisisorbida se puede desorber bajando la concentración o aumentando la temperatura moderadamente
- La desorción de una molécula quimisorbida requiere aumentar mucho la temperatura
- La adsorción física se denomina reversible y la química irreversible

Adsorción física	Quimisorción	
Entalpía de adsorción baja	Entalpía de adsorción alta	
(siempre exotérmica)	> 2-3 veces ΔH vaporización	
< 2-3 veces ΔH vaporización		
No específica	Muy específica	
Monocapa o multicapa	Solo Monocapa	
No disociación de especies adsorbidas	Puede haber disociación de especies adsorbidas	
Importante solo a bajas temperaturas	Posible en un intervalo amplio de temperaturas	
Rápida, no activada y reversible	Activada, puede ser lenta, irreversible	
No hay transferencia de electrones; puede producirse polarización	La transferencia de electrones origina enlaces entre el adsorbato y la superficie del sólido	

3. Adsorbentes: aplicaciones industriales

•Adsorbentes más usados:

- **≻**Carbón activado
 - **≻Zeolitas**
 - ➤Gel de sílice
 - ➤ Resinas poliméricas
 - ➤ Alúmina activada
 - >Tamices moleculares de carbón
- •El carbón activado, la alúmina y las zeolitas son los que más se usan industrialmente

tener alta superficie interna y buenas propiedades mecánicas; deben ser económicos y regenerables

Los adsorbentes comerciales deben

Adsorbentes disponibles:

Gel de sílice Alúmina activada carbón activado Tamices moleculares de carbón Zeolitas (tamices moleculares)

Polímeros, resinas, arcillas

Superficies específicas;

Alúmina activada: 50-250 m².g⁻¹ Gel de sílice: 200-600 m².g⁻¹ Zeolitas: 800-1000 m².g⁻¹

Carbón activado: 500-2000 m².g⁻¹

Las materias primas se encuentran usualmente en polvo. Es necesario aglomerarlas y empastillarlas o extruirlas para poder aplicarlas industrialmente

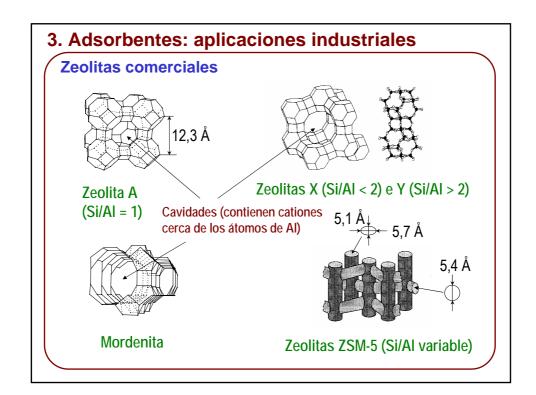
3. Adsorbentes: aplicaciones industriales

Carbón activado

- ➤ Adsorbente más usado en tonelaje
- ➤ No polar, alta capacidad para comp. orgánicos
- > Elevada proporción de microporos

Ejemplos de aplicaciones:

- ➤ Separación de compuestos orgánicos de corrientes gaseosas
- ➤ Purificación de agua


3. Adsorbentes: aplicaciones industriales

Zeolitas

- ➤ Aluminosilicatos cristalinos con estructura porosa uniforme y conocida (poros de 3-10 Å)
- ➤ Separaciones basadas en exclusión y diferencia de afinidad

Ejemplos de aplicaciones:

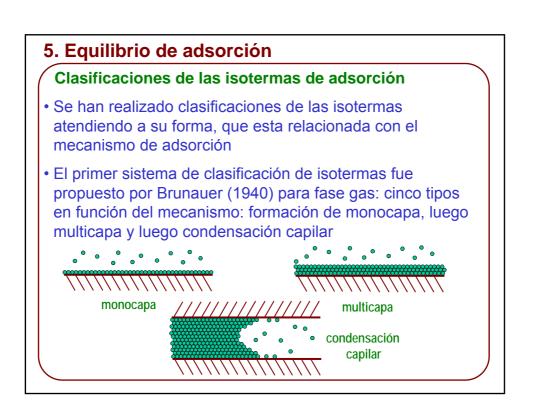
- ➤ Secado de gases
- ➤ Eliminación de CO₂ y SH₂ de corrientes gaseosas
- ➤ Separación de parafinas lineales de parafinas ramificadas y aromáticos

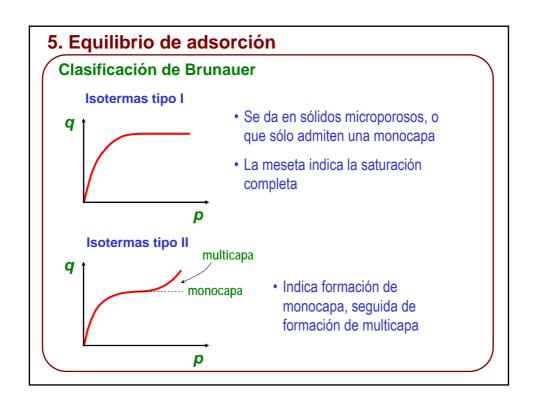
Procesos de eliminación de impurezas por adsorción

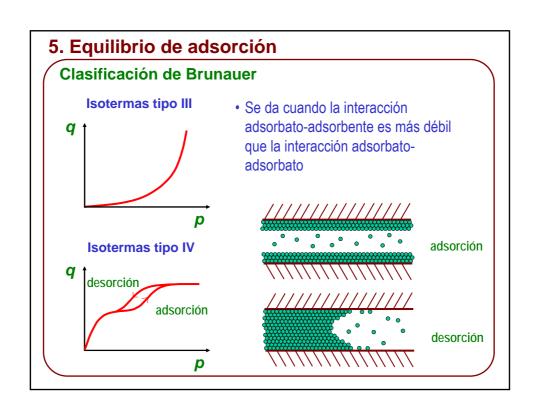
IMPUREZA	ALIMENTO	FASE (G/L)	ADSORBENTE	REGENERACIÓN
Agua (Secado)	Aire	G	4A	T (ó P) osc
	Gas Natural	G	4A	T oscilante
	CFC	G/L	4A modif	T oscilante
	Disolventes	L	3A	T oscilante
Dióxido de carbono	Aire (subma- rinos, naves)	G	4A	P oscilante (vacío)
H2S	Gases refinería	G	5A	T oscilante
SOx, NOx	Aire	G	Silicalita	T oscilante
VOC's	Aire	G	Carbón activado Silicalita	T oscilante
Agua (conc. de alcohol)	Disol. diluida De alcohol	L	3A, 4A	T oscilante

Procesos de separación por adsorción

MEZCLA	PROCESO	ALIMENTO (G/L)	ADSORBENTE	DESORCIÓN
Parafinas	ISOSIV/BP	Destil. C6-C10 (G)	5A	P oscil. (vacío)
lineales de isoparaf. Y aromáticos	TSFA/Ensorb	Queros. C10-C16 (G)	5A	Desplaz. Nafta
	ELF-N-ISELF	Nafta ligera (G)	5A	Cromatografía
	MOLEX (UOP)	Queros. C10-C16 (L)	5A	Desplaz. nC5
Aromáticos	PAREX/EBEX	Aromáticos C8	(Sr-Ba)X	Desplaz. PDEB ó tolueno
Nitrógeno/	Produc. O2	Aire (G)	5A/13X	P. Oscil. (eq.)
Oxígeno	Produc. N2	Aire (G)	4A	P. Oscil. (cinét.)
Monosacár. Gluc./Fruct.	SAREX	Melazas maiz (L) Hidroliz. Almidón (L)	CaY	Desplazamiento


4. Clasificación IUPAC de tamaños de poro


- Nomenclatura IUPAC para poros en función de su tamaño:
 - Microporos: diámetro menor de 20Å
 - ➤ Mesopororos: entre 20 y 500Å
 - Macroporos: más de 500Å
- Energía de adsorción inversamente proporcional al tamaño de poro
- Velocidad de difusión disminuye fuertemente con el tamaño de poro
- Los microporos concentran la mayor parte de la capacidad de adsorción, mientras que los meso y macroporos dan acceso a ellos

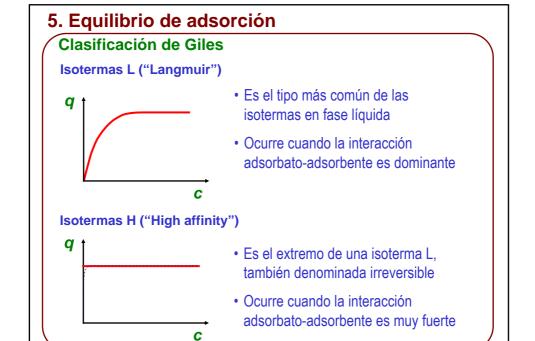

4. Mecanismos de separación por adsorción

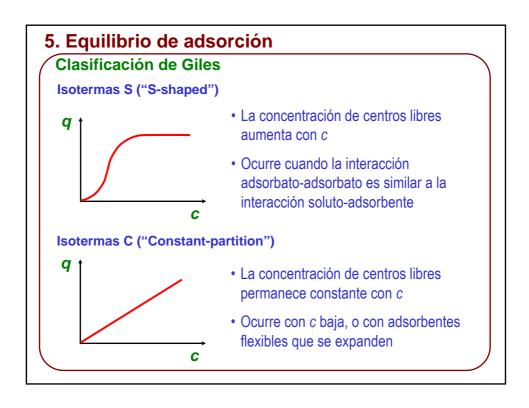
- ➤ Equilibrio: Diferencias en la afinidad de los adsorbibles por el adsorbente. Los adsorbibles acceden bien al interior de los poros
- ➤ Cinético: Diferencias en la velocidad de difusión/adsorción de los adsorbibles en los poros. Los adsorbibles acceden al interior de los poros, pero el tamaño molecular es próximo al tamaño de los poros
- ➤ Exclusión: Uno o más adsorbibles no pueden acceder al interior de los poros por tener mayor tamaño que éstos (efecto de tamiz molecular)

5. Equilibrio de adsorción La mayoría de los procesos de adsorción basados en la diferente capacidad de adsorción en equilibrio de cada componente En equilibrio, q (mol adsorbato / kg adsorbente) está relacionado con c (mol adsorbato / m³ fluido) mediante la isoterma de equilibrio (q vs. c a T constante) Equilibrio: A_{fluido} ↔ A_{adsorbido} c, mol m³ q, mol kg¹ q, mol kg¹

5. Equilibrio de adsorción

Clasificación de Brunauer


Isotermas tipo V

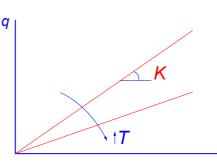

desorción

 Son como las tipo III con límite de saturación y ciclo de histéresis

Clasificación de Giles

- Se obtuvo para isotermas en fase líquida, basándose en el mecanismo de adsorción
- Se analizó la variación de la pendiente de la isoterma, que es proporcional a la concentración de centros libres de adsorción

5. Equilibrio de adsorción


- •Las isotermas de equilibrio se describen con expresiones matemáticas para el diseño de equipos
- •Dependiendo de si se adsorbe uno o más componentes:
 - ➤ Isotermas de componentes puros:
 - ✓ Isoterma lineal
 - ✓ Isoterma de Langmuir
 - ✓ Isotermas de Freundlich y de Prausnitz
 - ✓ Isoterma B.E.T.
 - ➤ Isotermas multicomponente:
 - √ Modelo de Langmuir extendido
 - ✓ Modelo de Prausnitz extendido

5.1 Isotermas para componentes puros

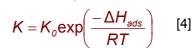
Isoterma lineal (Ley de Henry)

$$q = Kc$$
 [1]

$$K = K_0 \exp\left(\frac{-\Delta H_{ads}}{RT}\right)$$
 [2]

Características:

- \triangleright Límite de isotermas teóricas cuando $c \rightarrow 0$
- > Permite tratamiento matemático sencillo
- ➤ Describe q vs. c para concentraciones bajas


5.1 Isotermas para componentes puros

Isoterma de Langmuir

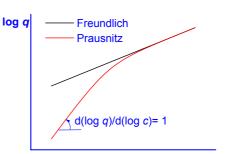
$$q = \frac{q_{sat}Kc}{1+Kc}$$
 [3]

 q_{sat} = capacidad máxima

K =cte. de equilibrio (afinidad)

Suposiciones modelo:

- No hay interacciones adsorbato-adsorbato
- Superficie energéticamente homogénea

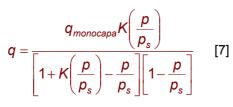


5.1 Isotermas para componentes puros

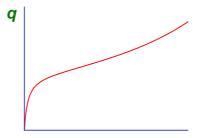
Isoterma de Freundlich

$$q = Kc^{1/n} \Rightarrow$$
 [5]
 $\log q = \log K + 1/n \log c$ [5a]

- Ecuación empírica que describe bien los datos de equilibrio en fase líquida
- No tiende a la ley de Henry cuando c → 0; la isoterma de Prausnitz corrige este defecto


log c

Isoterma de Prausnitz


$$q = \left(\frac{1}{Hc} + \frac{1}{Kc^{1/n}}\right)^{-1} [6]$$

5.1 Isotermas para componentes puros

Isoterma B.E.T. (Brunauer-Emmett-Teller)

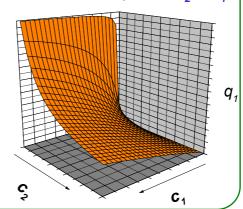
 $q_{monocapa}$ = capacidad monocapa K = cte. de equilibrio (afinidad) p_s = presión de saturación del gas

p

• Se obtiene a partir de un modelo teórico que supone que primero se forma la monocapa, para luego formarse infinitas muliticapas

• A partir del parámetro $q_{monocapa}$, se puede estimar la superficie interna, suponiendo que el adsorbato (N_2) cubre totalmente la superficie

5.2 Isotermas multicomponente


•Cuando hay mas de un adsorbato con afinidad hacia la superficie, hay efecto competitivo. Se describe con el modelo de Langmuir extendido

$$q_i = \frac{q_{sat,i}K_ic_i}{1 + \sum_{j=1}^{j=N} K_jc_j}$$
 [8]

 $q_{sat,i}$, K_i = parámetros de las isotermas de componente puro

N = número de componentes

Mezcla binaria 1,2 con $K_2 > K_1$

5.2 Isotermas multicomponente

- Para muchos sistemas, el modelo de Langmuir extendido no ajusta bien los datos experimentales
- •Modelos empíricos basados en el MLE proporcionan mejor ajuste, si bien no son extrapolables. Ejemplo:

Modelo de Prausnitz extendido

$$q_i = \frac{q_{sat,i} K_i c_i^{1/n_i}}{1 + \sum_{j=1}^{j=N} K_j c_j^{1/n_j}}$$
 [9]
$$q_{sat,i}, K_i, n_i = \text{parametros de las isotermas de componente puro}$$

 Mejores resultados si se estiman los parámetros a partir de datos experimentales de mezclas

- La termodinámica de la adsorción es una disciplina muy amplia
- •Fue desarrollada por Gibbs, con un tratamiento similar al del equilibrio líquido-vapor
- •La teoría se propuso para la adsorción en fase gas, pero se puede extender a la fase líquida
- •Se parte de las ecuaciones de variación de la energías interna y libre, obteniéndose las condiciones de equilibrio:

$$T^f = T^s$$
 fluido fase adsorbida $\mu_i^f = \mu_i^s$

 π es la "presión superficial" de la fase adsorbida

 π constante en la fase adsorbida

5.3 Termodinámica de la adsorción

• π se define como: U_s = energía interna de la fase adsorbida

$$\pi = - \left(\frac{\partial \textit{\textbf{U}}_{\textit{s}}}{\partial \textit{\textbf{A}}}\right)_{\textit{\textbf{S}}_{\textit{s}},\textit{\textbf{n}}_{\textit{s}}} \text{[10]} \begin{array}{c} \textit{\textbf{A}} = \text{ área del adsorbente} \\ \textit{\textbf{S}}_{\textit{s}},\textit{\textbf{n}}_{\textit{s}} = \text{entrop\'ia y n\'umero de moles de la} \\ \text{fase adsorbida} \end{array}$$

• La definición es similar a la de la presión de un gas:

$$P = -\left(\frac{\partial U}{\partial V}\right)_{S,n}$$

• A partir de las condiciones de equilibrio se llega a:

Isoterma de Gibbs

$$A\left(\frac{\partial \pi}{\partial P}\right)_{T} = \frac{RT}{P} n_{s} \underset{[11a]}{\overset{\text{para fase líquida}}{\longrightarrow}} A\left(\frac{\partial \pi}{\partial c}\right)_{T} = \frac{RT}{c} n_{s}$$
[11b]

P, c = presión de adsorbible, concentración de soluto

- A partir de las condiciones de equilibrio también se obtienen expresiones para calcular el calor de adsorción. Dos tipos:
- a) Calor isostérico de adsorción:

$$Q_{st}\left(\frac{\mathsf{J}}{\mathsf{mol}}\right) = H^f - H^s = -R\left(\frac{\partial(\ln p)}{\partial(1/T)}\right)_q = -R\left(\frac{\partial(\ln c)}{\partial(1/T)}\right)_q = -\Delta H_{ads}$$
fase gas fase líquida [12]

b) Calor diferencial de adsorción:

$$Q_{dif} = U^f - U^s$$

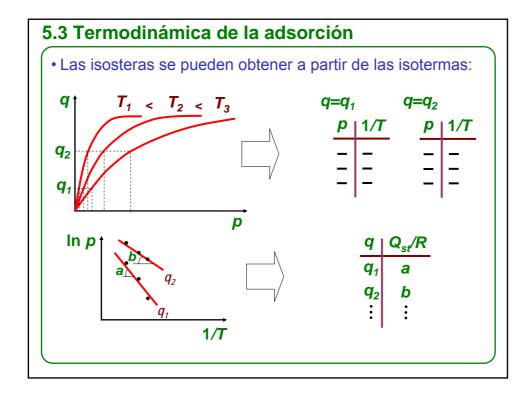
 Ambos calores están relacionados. La entalpía del fluido y de la fase adsorbida:

$$H^f = U^f + PV \xrightarrow{\text{gas ideal}} H^f = U^f + RT \qquad H^s \approx U^s$$

5.3 Termodinámica de la adsorción

• Por tanto:

$$Q_{dif} = U^f - U^s = (H^f - RT) - H^s = Q_{st} - RT$$
 [13]


• El calor isostérico se obtiene a partir de las isosteras de adsorción (In *p* vs. 1/*T* con *q* constante):

In
$$p = \text{cte} - \frac{Q_{st}}{RT}$$
 [14]

In $p = \text{cte} - \frac{Q_{st}}{RT}$ [14]

 $q \text{ constante}$

• Generalmente, el calor isostérico disminuye al aumentar q, ya que se ocupan centros de menor energía

Teoría de la solución adsorbida ideal (Ideal Adsorbed Theory, IAST)

- Tiene como objetivo la predicción del equilibrio de adsorción de una mezcla a partir de las isotermas de componente puro de cada componente
- Se parte de una mezcla de gases con $p_1, ..., p_N$ en equilibrio con una fase adsorbida con $q_1, ..., q_N$ con una presión superficial π_m a una temperatura T. De forma análoga a la ley de Raoult, se cumple:

 $p_i = p_i^o(\pi_m) \cdot x_i \leftarrow Fracción molar de i en la fase adsorbida$ Presión parcial de i

Presión parcial de i en la fase gas, en equilibrio con la fase adsorbida

Presión que debería tener i en la fase gas, si se adsorbiera puro, para alcanzar π_m en la fase adsorbida

Teoría de la solución adsorbida ideal

• La relación entre p_i^o y π_m viene dada por la isoterma de Gibbs:

$$A \left(\frac{\partial \pi_m}{\partial p_i^{\circ}} \right)_T = \frac{RT}{p_i^{\circ}} n_{s,i}^{\circ} \xrightarrow{\text{T constante}} A \left(\frac{d\pi_m}{dp_i^{\circ}} \right) = \frac{RT}{p_i^{\circ}} n_{s,i}^{\circ}$$

• Introduciendo unidades típicas $\rightarrow \frac{n_{s,i}^o}{A} \left(\frac{\text{mol}}{\text{m}_{\text{superficie}}^2} \right) \cdot S_p \left(\frac{\text{m}_{\text{superficie}}^2}{\text{kg}} \right) = q_i^o \left(\frac{\text{mol}}{\text{kg}} \right)$

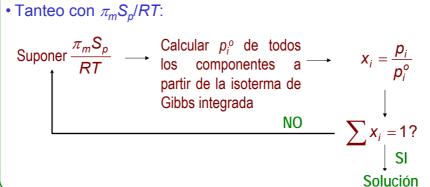
$$d\left(\frac{\pi_{m}S_{p}}{RT}\right) = \frac{q_{i}^{o}}{p_{i}^{o}}dp_{i}^{o} \Rightarrow$$

$$\frac{\pi_{m}S_{p}}{RT} = \int_{0}^{p_{i}^{o}} q_{i}^{o} dp_{i}^{o} = \int_{0}^{p_{1}^{o}} q_{1}^{o} dp_{1}^{o} = \int_{0}^{p_{1}^{o}} q_{2}^{o} dp_{2}^{o} = \dots [16]$$

5.3 Termodinámica de la adsorción

Teoría de la solución adsorbida ideal

• La función $q_i^o(p_i^o)$ es la isoterma del componente i puro. Si se describe con la ecuación de Langmuir:


$$q_i^{\circ} = \frac{q_{\max,i} K_i p_i^{\circ}}{1 + K_i p_i^{\circ}} \Rightarrow \frac{\pi_m S_p}{RT} = \int_0^{p_i^{\circ}} \frac{q_{\max,i} K_i}{1 + K_i p_i^{\circ}} dp_i^{\circ} \Rightarrow$$

$$\frac{\pi_{m}S_{p}}{RT} = q_{\max,i} \ln(1 + K_{i}p_{i}^{\circ}) \Rightarrow p_{i}^{\circ} = \frac{\exp\left(\frac{\pi_{m}S_{p}}{RT}/q_{\max,i}\right) - 1}{K_{i}}$$
[17b]

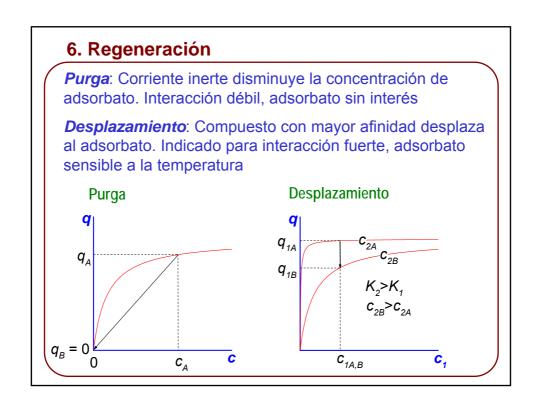
 Si alguna de las ecuaciones no es integrable analíticamente, debe resolverse la integral de forma numérica

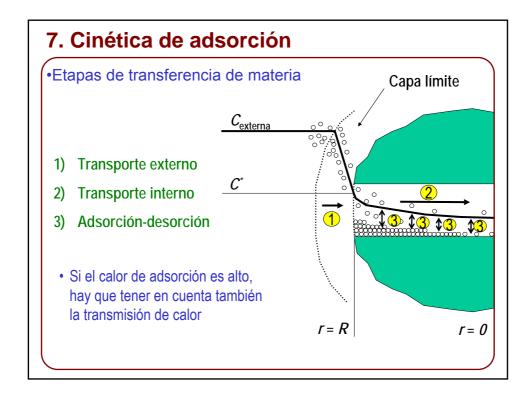
Algoritmo de cálculo para el modelo IAST

- Se desea calcular las concentraciones en fase adsorbida $q_1, q_2, ..., q_N$ en equilibrio con una mezcla de gases con presiones parciales conocidas $p_1, p_2, ..., p_N$
- Se conocen todas las isotermas $q_i^o = f(p_i^o)$
- Tanteo con $\pi_m S_n / RT$:

5.3 Termodinámica de la adsorción

Algoritmo de cálculo para el modelo IAST


• Para empezar a tantear, se calcula el valor de que resulta de suponer $p_i^o = P_{TOTAL}$ para cada componente, y se calcula el valor de la variable superficial para empezar a tantear:


$$\left(\frac{\pi_m S_p}{RT}\right)_{\text{inicio}\atop \text{tanteo}} = \sum_{i=1}^{i=N} y_i \left(\frac{\pi_m S_p}{RT}\right)_i \qquad y_i = \text{fracción molar de i}$$
en el gas

• Queda calcular q_{TOTAL} = $\sum q_{i\cdot}$ Se obtiene a partir de la siguiente ecuación (relación de Lewis):

$$\frac{1}{q_{TOTAL}} = \sum_{i=1}^{i=N} \frac{x_i}{q_i^o(p_i^o)} \quad [19]$$

6. Regeneración • Tiene como objetivo la recuperación del adsorbente, adsorbato, o de ambos. Determina la economía del proceso • Cuatro tipos de regeneración: térmica, disminución de presión, purga, desplazamiento Regeneración por disminución de Regeneración térmica presión (sólo gases) q_A $q_{_A}$ $q_{_B}$ $T_{B} > T_{A}$ $q_{\scriptscriptstyle B}$ $c_{A,B}$ C $p_{\scriptscriptstyle B}$ p p_{A}

7. Cinética de adsorción

Transporte externo

 Según la teoría de la capa límite, el transporte externo ocurre por difusión molecular:

$$N\left(\frac{\text{mol}}{\text{m}_{\text{superficie partícula }}^{2}}\right) = k_{f}\left(c_{\text{externa}} - c^{*}\right)$$
 [21]

 k_f = Coeficiente de transferencia de materia externo, m/s

 k_f se calcula experimentalmente o a partir de correlaciones. En lechos fijos (Wakao y Funazkri, 1978):

$$Sh = 2 + 1,1Re^{0.6}Sc^{1/3}$$
 $Sh = \frac{k_f d_p}{D_m}$ $Re = \frac{\rho v d_p}{\mu}$ $Sc = \frac{\mu}{\rho D_m}$ [22]

7. Cinética de adsorción

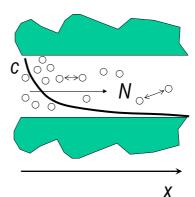
Transporte interno

- •Puede tener lugar debido a varios mecanismos:
 - **▶** Difusión molecular
 - > Difusión superficial
 - **➢ Difusión de Knudsen**
 - ➤ Difusión configuracional
 - ➤ Flujo convectivo
- •Los mecanismos mas frecuentes son los tres primeros, excepto para zeolitas, donde domina la difusión configuracional

7. Cinética de adsorción

Difusión molecular

• Ocurre cuando los choques intermoleculares son los más frecuentes. Se describe con la ley de Fick,


$$N\left(\frac{\text{mol}}{\text{m}^2\text{ s}}\right) = -D_e \frac{dc}{dx}$$
 [23]

 $D_{\rm e}$ = Difusividad efectiva en poros,

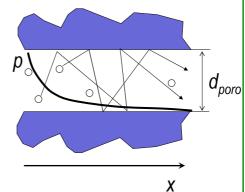
$$D_{\rm e} = \frac{D_{\rm m} \varepsilon}{ au}$$

 ε = Porosidad

 τ = Tortuosidad

7. Cinética de adsorción

Difusión de Knudsen


 Ocurre cuando los choques de las moléculas con las paredes del poro son los más frecuentes (sólo gas),

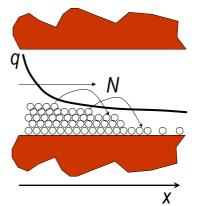
$$N = -\frac{D_K}{RT} \frac{\varepsilon}{\tau} \frac{dp}{dx}$$
 [24]

 D_K = Difusividad de Knudsen, m²/s ρ

$$D_{K} = \frac{d_{poro}}{3} \sqrt{\frac{8RT}{\pi M}}$$

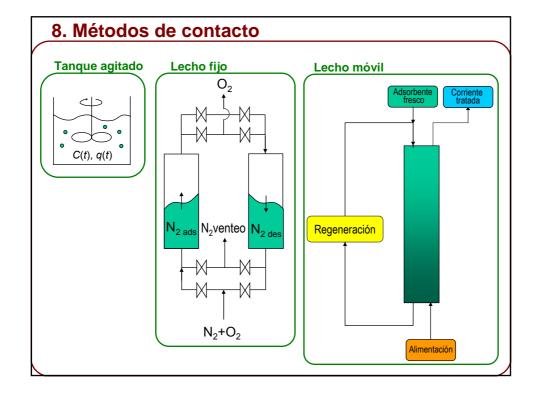
M = Peso molecular del gas

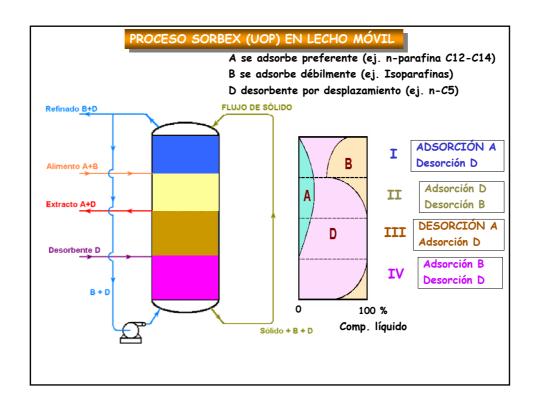
7. Cinética de adsorción

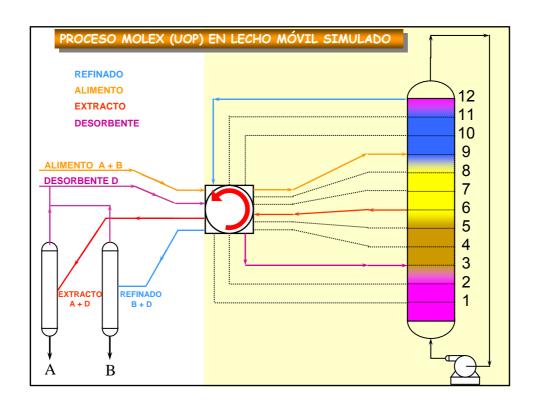

Difusión superficial

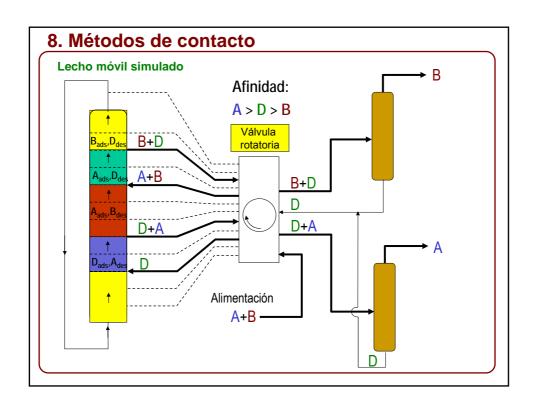
 Ocurre cuando las moléculas en la fase adsorbida tienen una movilidad elevada,

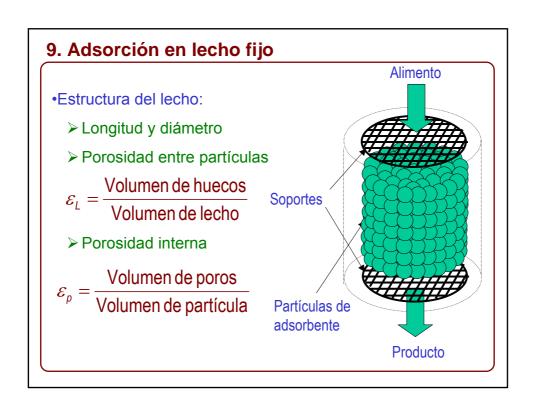
$$N = -D_s \rho_p \frac{dq}{dx}$$
 [25]

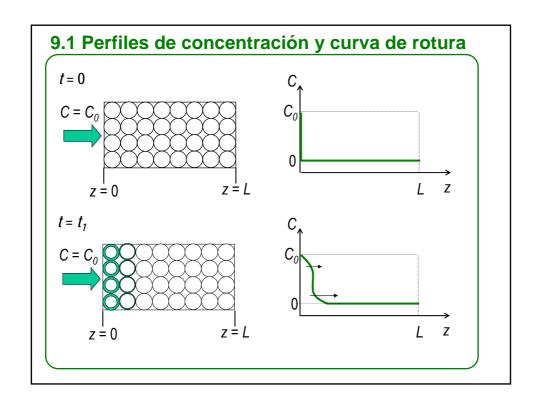

 D_s = Difusividad superficial, m²/s ρ_0 = densidad de partícula, kg/m³

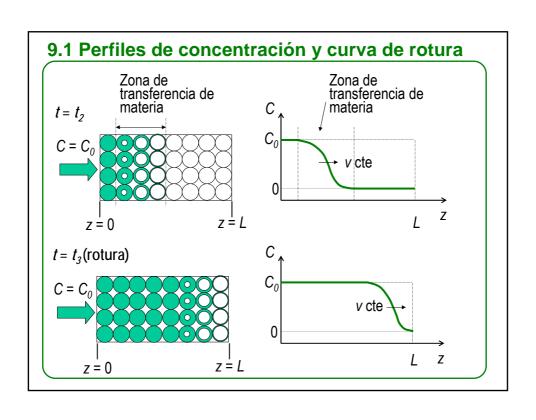

• *D_s* se obtiene experimentalmente

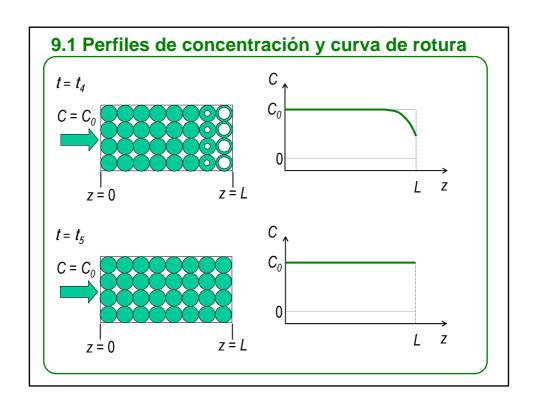


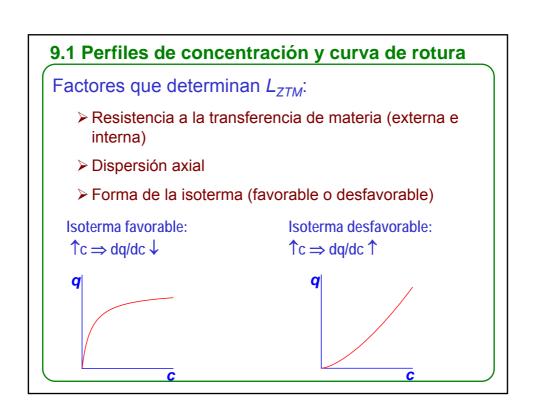

8. Métodos de contacto

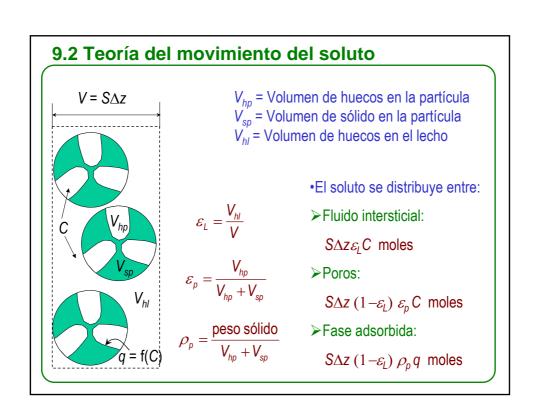

- •Los métodos de contacto entre la fase a separar y el adsorbente son:
 - ➤ Tanque agitado (sólo líquidos)
 - **≻**Lecho fijo
 - ▶Lecho móvil
 - >Lecho móvil simulado
- •El lecho fijo es el método más utilizado ya que se adapta al compromiso de usar el adsorbente de forma eficaz con un equipo sencillo

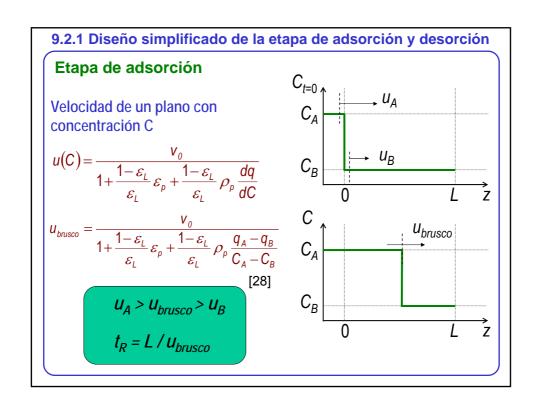


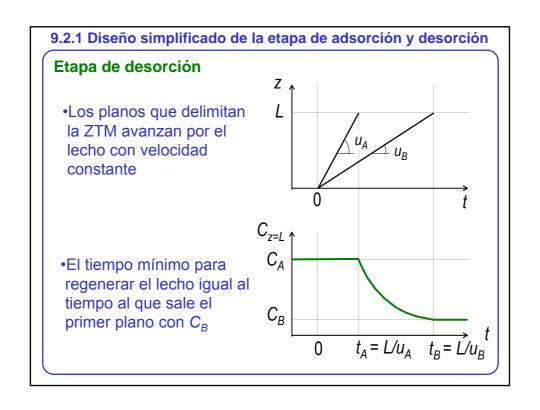


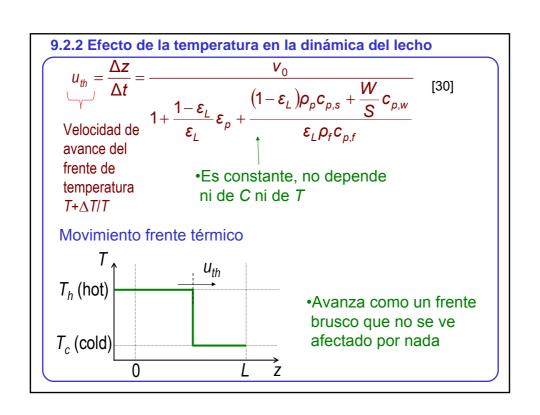






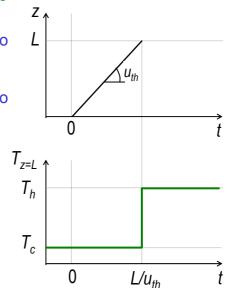





9.2 Teoría del movimiento del soluto

Cálculo de la velocidad de avance de un plano con concentración
$$C+\Delta C$$
 t
 $Q,C+\Delta C$
 C,q
 $C+\Delta C$
 $C+$

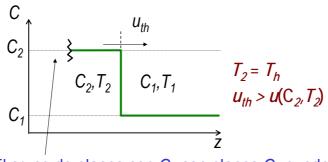
9.2.1 Diseño simplificado de la etapa de adsorción y desorción Etapa de desorción Velocidad de un plano con concentración C $u(C) = \frac{V_0}{1 + \frac{1 - \varepsilon_L}{\varepsilon_L} \varepsilon_p + \frac{1 - \varepsilon_L}{\varepsilon_L} \rho_p \frac{dq}{dC}}$ •Se forma un frente disperso, la L_{ZTM} aumenta a medida que el frente avanza por el lecho • L Z



9.2.2 Efecto de la temperatura en la dinámica del lecho

Movimiento frente térmico

- •El plano del frente térmico avanza por el lecho con velocidad constante. Al llegar a un plano del lecho determinado, provoca un aumento de la temperatura, provocando desorción
- •El tiempo al que sale el frente térmico se calcula como *L/u_{th}*

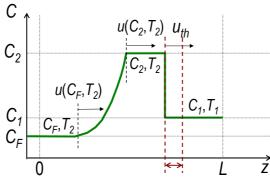

9.2.2 Efecto de la temperatura en la dinámica del lecho

Nomenclatura para el análisis efecto frente térmico

- $\succ T_1$ = temperatura inicial en el lecho
- $> C_1, q_1$ = concentración en el fluido y en el sólido inicial
- $\succ T_2$ = temperatura nueva en el lecho
- ➤ C₂, C_{cambio}: se explican más adelante
- > C_F = concentración corriente alimentada
- •Como ya se ha indicado, el frente térmico provoca desorción (si $T_2 = T_h$). Se pueden dar dos casos en función de la relación entre la velocidad del frente térmico y la velocidad de los planos con la nueva concentración que aparece en el lecho por la desorción

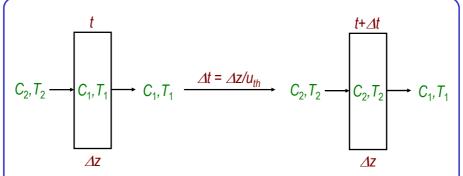
9.2.2 Efecto de la temperatura en la dinámica del lecho

Caso 1: Los planos con la nueva concentración van por detrás del frente térmico


El cruce de planos con C_F con planos C_2 puede dar lugar a un frente brusco o disperso:

 $C_F < C_2 \rightarrow frente disperso (más habitual)$

 $C_F > C_2 \rightarrow frente brusco$



Subcaso típico: $C_F < C_2$; perfil en el lecho

 Δz donde se hace el balance de materia para calcular C_2

9.2.2 Efecto de la temperatura en la dinámica del lecho

Balance de adsorbato en Δz

$$\begin{split} Q\Delta t \big(C_2 - C_1 \big) &= S\Delta z \big(\boldsymbol{\varepsilon}_L + \big(1 - \boldsymbol{\varepsilon}_L \big) \boldsymbol{\varepsilon}_p \, \big) \big(C_2 - C_1 \big) + \\ &\quad + S\Delta z \big(1 - \boldsymbol{\varepsilon}_L \big) \boldsymbol{\rho}_p \big(q_2 \big(C_2, T_2 \big) - q_1 \big(C_1, T_1 \big) \big) \end{split}$$
 Reordenando

$$0 = \left(\varepsilon_L + (1 - \varepsilon_L)\varepsilon_\rho - \frac{v_0\varepsilon_L}{u_{th}}\right)(C_2 - C_1) + (1 - \varepsilon_L)\rho_\rho(q_2 - q_1)$$
 [31]

9.2.2 Efecto de la temperatura en la dinámica del lecho

Caso 2: Los planos con la nueva concentración van por delante del frente térmico

$$C_{cambio}$$

$$C_{cambio}$$

$$C_{cambio}$$

$$C_{cambio}$$

$$C_{F}$$

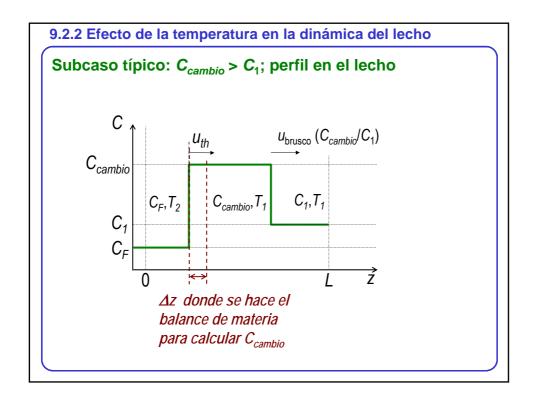
$$C_{F}$$

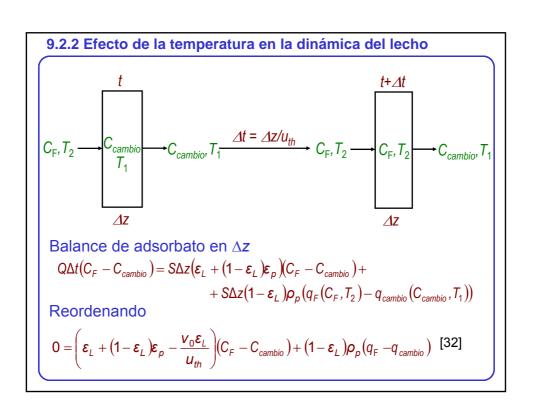
$$C_{F}$$

$$C_{Cambio}$$

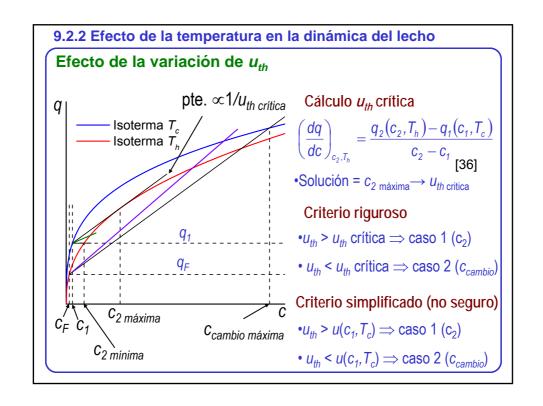
$$C_{Cambio}$$

$$C_{Cambio}$$


$$C_{Cambio}$$


$$C_{Cambio}$$

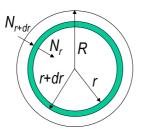
El cruce de planos con C_{cambio} con planos C_1 puede dar lugar a un frente brusco o disperso:

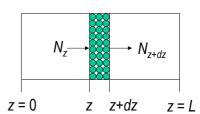

 $C_{cambio} < C_1 \rightarrow frente disperso$

 $C_{cambio} > C_1 \rightarrow frente \ brusco \ (más \ habitual)$

9.2.2 Efecto de la temperatura en la dinámica del lecho •Sólo queda ver un método para saber que caso es aplicable (caso 1 o 2) •El caso 1 ocurre siempre que es posible, porque es más estable •Reordenando las ecuaciones para c_2 y c_{cambio} , se llega a: Caso 1 $u_{th} = \frac{v_0}{1 + \frac{1 - \varepsilon_L}{\varepsilon_L} \varepsilon_p + \frac{1 - \varepsilon_L}{\varepsilon_L} \rho_p} \frac{q_2(c_2, T_h) - q_1(c_1, T_c)}{c_2 - c_1}$ [33] Caso 2 $u_{th} = \frac{v_0}{1 + \frac{1 - \varepsilon_L}{\varepsilon_L} \varepsilon_p + \frac{1 - \varepsilon_L}{\varepsilon_L} \rho_p} \frac{q_{cambio}(c_{cambio}, T_c) - q_F(c_F, T_h)}{c_{cambio} - c_F}$ [34] $u_{th} = \frac{v_0}{c_2 - c_1}$ Es la pendiente de la recta que une (c_p, q_p) con (c_2, q_p) para el caso 1, o que une (c_p, q_p) con (c_2, q_p) para el caso 2

9.3 Modelo general de adsorción


- •Para considerar el efecto de la resistencia, el modelo del sistema debe incluir parámetros cinéticos
- •A mayor complejidad del modelo, mayor exactitud en la simulación de la dinámica real si las hipótesis son correctas
- ·Los modelos con base teórica, más adecuados
- •Analizamos un modelo basado en las siguientes hipótesis:
 - Lecho isotermo
 - Partículas esféricas
 - •D_{eff} engloba todos los mecanismos internos
 - ·Velocidad del fluido constante


9.3 Modelo general de adsorción

- •El modelo se obtiene a partir de los balances de materia en dos niveles:
 - •Balance de materia en las partículas de adsorbente
 - •Balance de materia en el fluido intersticial

Porción diferencial de partícula

Porción diferencial de lecho

9.3 Modelo general de adsorción

Balance en la porción diferencial de partícula Condición inicial

$$\varepsilon_{p} \frac{\partial \mathbf{c}}{\partial t} + \rho_{p} \frac{\partial \mathbf{q}}{\partial t} = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left(r^{2} D_{\text{eff}} \rho_{p} \frac{\partial \mathbf{q}}{\partial r} \right) \qquad q = q_{\text{inicial}} \quad \forall r$$
[37]

Condiciones de contorno

•Condición de simetría
$$r = 0$$
 $\frac{\partial q}{\partial r} = 0$

•Condición de simetría
$$r=0$$
 $\frac{\partial q}{\partial r}=0$
•Flujo continuo en la $r=R$ $k_f(C-c^*)=\rho_p D_{eff} \frac{\partial q}{\partial r}\Big|_{r=R}$ superficie

9.3 Modelo general de adsorción

Balance en la porción diferencial de lecho

$$\frac{\partial C}{\partial t} = D_{\text{axial}} \frac{\partial^2 C}{\partial z^2} - V_0 \frac{\partial C}{\partial z} - \frac{3}{R} \frac{1 - \varepsilon_L}{\varepsilon_L} k_f (C - c^*)$$
[38]

Condición inicial

Condiciones de contorno

$$C = C_{inicial} \quad \forall z$$

$$z = 0 \quad -D_{axial} \frac{\partial C}{\partial z} = v_o \left(C_o - C_{z=0^+} \right)$$

$$z = L \qquad \frac{\partial C}{\partial z} = 0$$

9.3.1 Modelos simplificados: Solución de Rosen

Suposiciones adicionales:

Suposiciones adicionales:

Isoterma lineal

$$D_{axial} = 0$$
 (flujo pistón)

Lecho largo ($\lambda > 50$)

$$\frac{C}{C_0}(z,t) = \frac{1}{2} \left\{ 1 + \text{erf} \left[\frac{\frac{3\tau}{2\lambda} - 1}{2\sqrt{\frac{1 + 5\chi}{5\lambda}}} \right] \right\}$$

Definición números adimensionales

$$\lambda = \frac{3D_{\text{eff}}K_{H}(1-\varepsilon_{L})z}{v_{0}\varepsilon_{L}R^{2}} \qquad \chi = \frac{D_{\text{eff}}K_{H}}{k_{f}R} \qquad K_{H} = \rho_{p}K$$

$$\chi = \frac{D_{\text{eff}} K_H}{k_t R}$$

$$K_H = \rho_p K$$

[39]

$$\tau = \frac{2D_{\text{eff}}}{R^2} \left(t - \frac{z}{v_0} \right)$$

Función error

$$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} \exp(-x^{2}) dx$$

9.3.1 Modelos simplificados: Solución de Coper

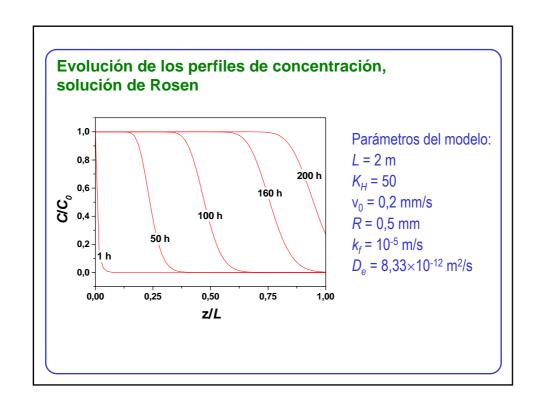
Suposiciones adicionales:

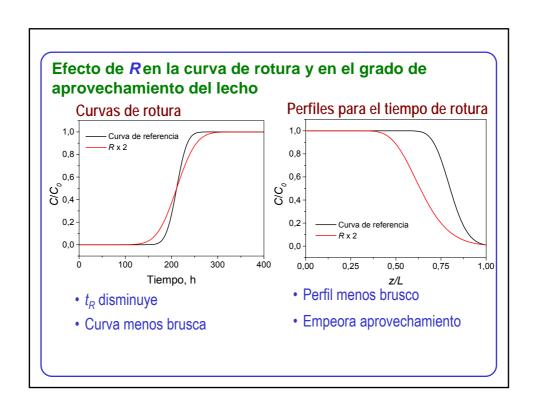
- Isoterma irreversible
- $D_{axial} = 0$ (flujo pistón)

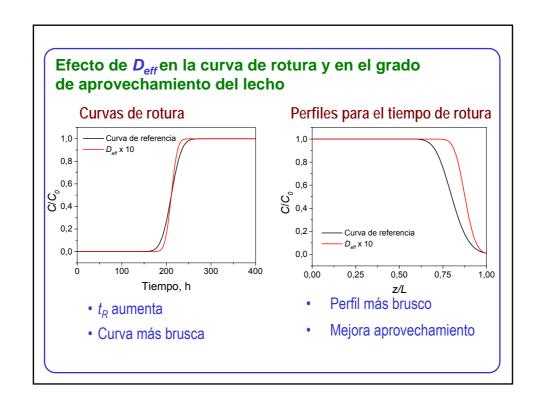
$$\frac{C}{C_0} = \exp(-\xi) \qquad 0 \le \tau \le \tau$$

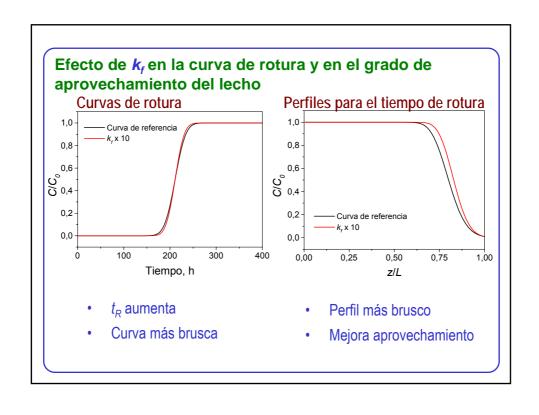
$$\frac{C}{C_0} = \exp(-\xi) \qquad 0 \le \tau \le 1$$

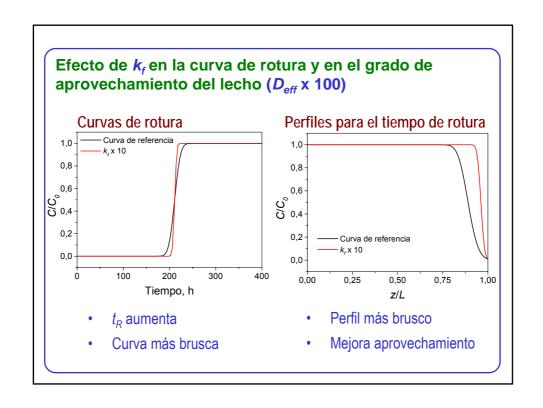
$$\frac{C}{C_0} = \exp(\tau - \xi - 1) \quad 1 \le \tau \le 1 + \xi$$

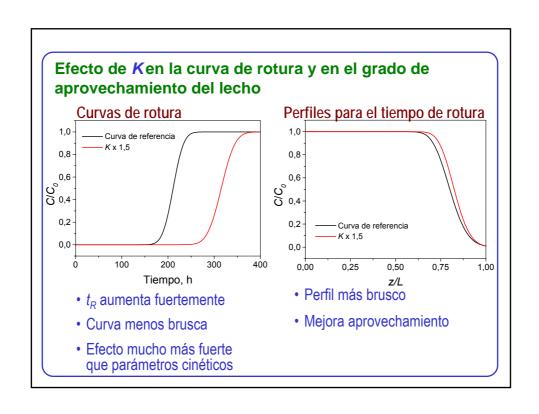

$$\frac{C}{C_0} = 1 \qquad \tau \ge 1 + \xi$$

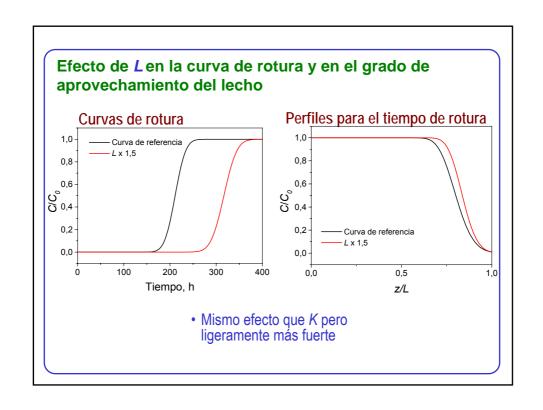

$$\frac{C}{C_0} = 1 \qquad \qquad \tau \ge 1 + \xi$$

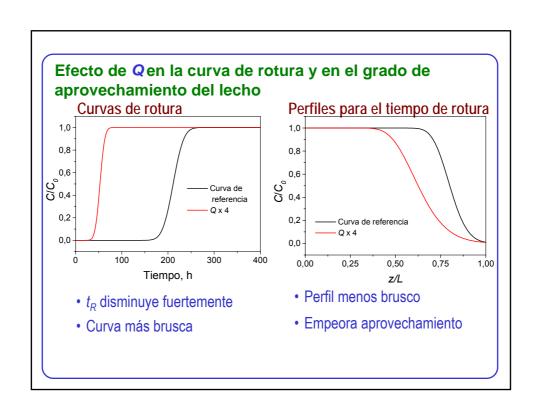

Definición números adimensionales

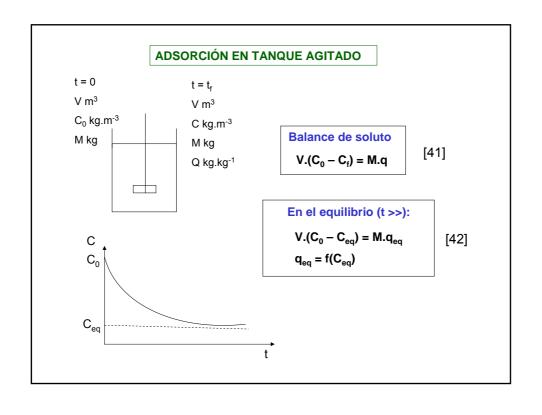

$$\tau = \frac{3k_f C_0}{\rho_p q_0 R} \left(t - \frac{z}{v_0} \right) \qquad \xi = \frac{3k_f z (1 - \varepsilon_L)}{v_0 \varepsilon_L R}$$

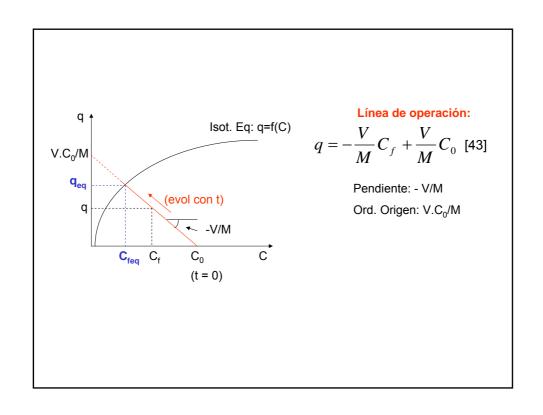

El perfil de concentración no cambia con el tiempo para τ < 1, lo cual ocurre en mayor o menor medida en todos los lechos de adsorción

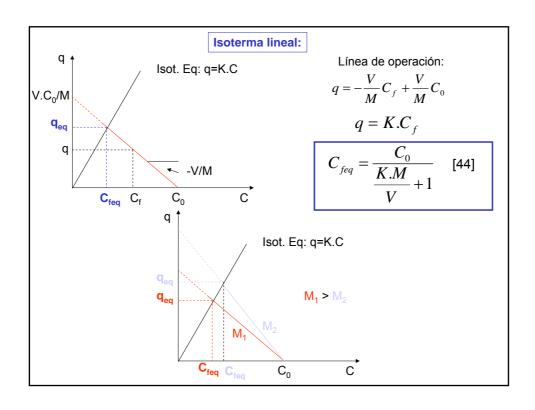


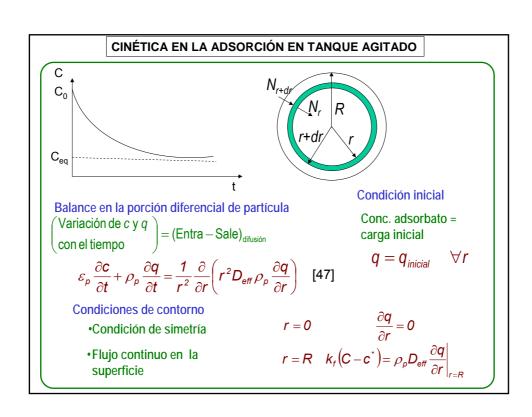











$$q = -\frac{V}{M}C_f + \frac{V}{M}C_0$$
$$q = \frac{q_{sat}.K.C_f}{1 + K.C_f}$$

$$\frac{K.V}{M}C_{feq}^{2} + \left[q_{sat}.K + \frac{V}{M} - \frac{K.V}{M}.C_{0}\right].C_{feq} - \frac{V}{M}C_{0} = 0$$
 [45]

Isoterma de Freundlich

$$q = K.C_f^{1/n}$$

$$K.C_{feq}^{1/n} + \frac{V}{M}C_{feq} - \frac{V}{M}C_0 = 0$$
 [46]

Control de la transferencia externa

$$N = k_{f \cdot}(C - c^*)$$

Para partículas esféricas de radio R:

Superficie/Volumen sólido: $4\pi R^2/(4\pi R^3/3) = 3/R$

$$-V\frac{dC}{dt} = k_f \cdot \frac{3.M}{\rho_p \cdot R} \left(C - c^* \right)$$
 [48]

$$q = \frac{V}{M} (C_0 - C)$$

$$q = f(c^*)$$