

GRADO INGENIERÍA QUÍMICA SEMINARIO DE QUÍMICA ORGÁNICA Hoja 10

1.- Completa el siguiente cuadro de reacciones:

2.- Completa los siguientes esquemas de reacciones:

bromuro de propilo
$$_{+}$$
 KCN \longrightarrow A $\xrightarrow{\text{H}_{3}\text{O}^{+}}$ B $\xrightarrow{\text{SOCl}_{2}}$ C $\xrightarrow{\text{MeOH}}$ D $\xrightarrow{\text{MeONa}}$ E

cloruro de tercbutilo
$$\stackrel{Mg/\text{ eter}}{\longrightarrow}$$
 A $\stackrel{CO_2}{H_3O^+}$ B $\stackrel{PBr_3}{\longrightarrow}$ C

ácido butanoico
$$\xrightarrow{SOCl_2}$$
 A $\xrightarrow{AlCl_3}$ B + B'
$$\downarrow H_4AlLi$$
C $\xrightarrow{H^+}$ D

- 3.- Formula los productos de reacción del cloruro de butanoílo con:
 - a) agua
 - b) 2-propanol
 - c) p-nitrofenol
 - d) amoniaco
 - e) tolueno y AlCl₃
 - f) metilamina
 - g) acetato sódico
- 4.- Cuando un compuesto A (C₁₈H₂₂O₂) se calienta en medio ácido proporciona un producto B cuya ozonolisis conduce a C y D. C puede sintetizarse por reacción del cloruro de bencilo con acetiluro sódico, tratando el compuesto E así obtenido con un ácido acuoso en presencia de sales mercúricas. Por otra parte, el tratamiento de fenol

con sosa y yoduro de metilo conduce a un compuesto F, que por reacción con cloruro de acetilo en presencia de tricloruro de aluminio permite sintetizar D ($C_9H_{10}O_2$). Establecer la estructura de todos los compuestos implicados sabiendo que A puede obtenerse por reacción de H y K, y que a su vez se sintetizan del siguiente modo:

D
$$\stackrel{I_2/\text{NaOH}/\text{H}_2\text{O}}{\longrightarrow}$$
 $\stackrel{H_3\text{O}^+}{\longrightarrow}$ $\stackrel{G}{\longrightarrow}$ $\stackrel{\text{SOCl}_2}{\longrightarrow}$ $\stackrel{H_2}{\longrightarrow}$ $\stackrel{\text{H}_2}{\longrightarrow}$ $\stackrel{\text{H}_3\text{O}^+}{\longrightarrow}$ $\stackrel{\text{I}}{\longrightarrow}$ $\stackrel{\text{PBr}_3}{\longrightarrow}$ $\stackrel{\text{J}}{\longrightarrow}$ $\stackrel{\text{Mg}}{\longrightarrow}$ $\stackrel{\text{K}}{\longrightarrow}$

- 5.- Escribe las fórmulas estructurales de los productos de la reacción de C₂H₅O Na⁺ con los siguientes ésteres:
 - a) CH₃CH₂COOC₂H₅
 - b) $C_6H_5COOC_2H_5 + CH_3COOC_2H_5$
 - c) $C_6H_5CHO + CH_3CH_2COOC_2H_5$
- 6.- Cuando el tolueno se trata con cloro en presencia de luz se forma un compuesto A capaz de reaccionar con cianuro potásico para dar $B(C_8H_7N)$. Si B se calienta con ácido sulfúrico acuoso y el producto resultante, una vez aislado, se disuelve en metanol anhidro y se calienta en corriente de cloruro de hidrógeno, se transforma en C $(C_9H_{10}O_2)$. Finalmente cuando C se calienta con metóxido sódico en metanol anhidro se llega al compuesto D $(C_{17}H_{16}O_3)$. Establézcase la estructura de todos los productos sabiendo además que D en presencia de Pd/C adiciona un mol de hidrógeno y que el producto resultante, E, calentado con hidróxido sódico acuoso, pasa a F. Este compuesto puede transformarse en ácido 2,4-difenilbutanoico cuando se calienta primero suavemente con un ácido y se hidrogena después catalíticamente.
- 7.- La *mescalina* es el agente alucinógeno del *peyote*, planta utilizada por los aztecas en sus rituales. Su síntesis se lleva a cabo a partir de un ácido A $(C_7H_6O_5)$ que se transforma en B por tratamiento con metanol en presencia de un ácido mineral. La reacción de B con MeI en NaOH origina C, que con AlLiH₄ se reduce a D $(C_{10}H_{14}O_4)$. D reacciona con PCl₃ dando E, que tratado con NaCN conduce a F. El tratamiento de F con AlLiH₄ lleva, finalmente, a la *mescalina*.

Determínese la estructura de la *mescalina* sabiendo que su oxidación con KMnO₄ proporciona un ácido G (C₁₀H₁₂O₅). Cuando G se trata con SOCl₂ se obtiene H que se transforma en I por reacción con NH₃. El tratamiento de I con Br₂ en medio básico da lugar a 3,4,5-trimetoxianilina. Por otra parte G se obtiene por hidrólisis ácida de C.