Q.E.D.

4.3. Estabilidad de las soluciones de sistemas no lineales. Linealización. Sea el sistema x' = f(t, x), sea z una solución del sistema, sea x una solución genérica y sea y = x - z. Sea y' = Ay la primera aproximación del sistema:

$$y' = x' - z' = f(t, x) - f(t, z) = f(t, y + z) - f(t, z) = g(t, y) = Ay + h(t, y)$$

donde suponemos que la matriz A no depende de t. Entonces

Teorema 4.7. Supongamos que

- 1. Todos los autovalores de A tienen parte real negativa.
- 2. La función h(t,y) es continua y con derivadas primeras continuas respecto a y_1, \ldots, y_n en el conjunto $(\beta \sigma, \infty) \times V$ con β , $\sigma \in \mathbb{R}$, $\sigma > 0$ y V un entorno de y = 0 en \mathbb{R}^n y tal que h(t,y) = o(y) cuando $||y|| \to 0$, uniformemente con respecto a t para $t \in [\beta, \infty)$.

Entonces, existe un entorno U de y = 0 en \mathbb{R}^n tal que

- Si $y_0 \in U$, la solución $y(t; t_0, y_0)$ (de y' = Ay + h(t, y)) está definida y verifica $y(t; t_0, x_0) \in U$ para todo $t \ge t_0$.
- Si c > 0 es tal que $\Re \lambda < -c$ para todo autovalor λ de A, se tiene

$$||y(t;t_0,y_0)|| < Me^{-c(t-t_0)}||y_0||$$

para $y_0 \in U$ y $t \in [t_0, \infty)$, y para cierta constante M. En particular la solución $y \equiv 0$ de y' = Ay + h(t, y) es asintóticamente estable. \square

Además:

Teorema 4.8. Supongamos que

- 1. La matriz A tiene al menos un autovalor λ con parte real positiva.
- 2. La función h(t,y) satisface las mismas hipótesis que en el teorema 4.7.

Entonces la solución $y \equiv 0$, de y' = Ay + h(t, y) es inestable.

Si, en particular, $\Re \lambda > 0$ para todo autovalor λ de A, existe un entorno U de y = 0 en \mathbb{R}^n tal que

- Si $y_0 \in U$, la solución $y(t; t_0, y_0)$ sale definitivamente de U, i.e. existe $t^* = t^*(t_0, y_0)$ tal que $y(t; t_0, y_0) \notin U$ para todo $t > t^*$.
- Si c > 0 es tal que $\Re \lambda > c$ para todo autovalor λ de A, tenemos

$$||y(t;t_0,y_0)|| \ge Me^{c(t-t_0)}||y_0||$$

mientras $y(t;t_0,y_0)$ permanezca en U, para cierta constante M>0.

Cuando el sistema inicial es autónomo, x' = f(x), $f \in C^1(\Omega)$, entonces los teoremas anteriores llevan al siguiente enunciado:

Corolario 4.9. Sea z un punto de equilibrio de x' = f(x) (i.e. f(z) = 0).

- 1. Sea Df la matriz jacobiana de f, i.e. $Df = \partial f_i/\partial z_j$). Si todos los autovalores λ de Df(z) tienen $\Re \lambda < 0$, existe un entorno U de z en Ω tal que
 - $Si x_0 \in U$, la solución $x(t; t_0, x_0)$ de x' = f(x) está definida y verifica $x(t; t_0, x_0) \in U$ para todo $t \ge t_0$.
 - Si c > 0 es tal que $\Re \lambda < -c$ para todo autovalor λ de Df(z), entonces, para cierta constante M > 0 se verifica

$$||x(t;t_0,x_0)-z|| \le Me^{-c(t-t_0)}||x_0-z||$$

para $x_0 \in U$ y $t \in [0, \infty)$. En particular z es asintóticamente estable.

- 2. Si la matriz Df(z)tiene al menos un autovalor con parte real positiva el punto de equilibrio z es inestable. Si, en particular todos los autovalores de Df(z) tienen parte real positiva, existe un entorno $U \subseteq \Omega$ de z tal que
 - Si $x_0 \in U$, la solución $x(t; t_0, x_0)$ de x' = f(x) sale definitivamente de U i.e. existe $t^* = t^*(t_0, x_0) \ge t_0$ tal que $x(t; t_0, x_0) \notin U$ para todo $t > t^*$.
 - Si c > 0 es tal que $\Re \lambda > c$ para todo autovalor λ de Df(x), entonces, para cierta constante M > 0 se verifica

$$||x(t;t_0,x_0)-z|| \ge Me^{c(t-t_0)}||x_0-z||$$

mientras $x(t; t_0, x_0)$ permanezca en U. \square