Problema 63

Calcule la integral de línea del campo vectorial plano $\vec{F}(x,y) = (xy,0)$ desde (-1,0) hasta (1,0) a lo largo de las siguientes curvas: (a) el eje x, (b) la parábola $y = 1 - x^2$, (c) la línea quebrada y = |x| - 1 y (d) la parte inferior de la circunferencia $x^2 + y^2 = 1$. ¿Es \vec{F} gradiente de algún campo escalar?

Problema 64

Sea R la región plana limitada por la curva

$$\vec{r}(t) = \begin{cases} (t, -1 - t) & \text{si } t \in [-1, 0] \\ \left(\text{sen } \left(t - \frac{\pi}{2}\right), \cos\left(t - \frac{\pi}{2}\right)\right) & \text{si } t \in [0, 3\pi/2] \end{cases}$$

y sean $P(x,y)=x+y^3$ y $Q(x,y)=x-x^3$. Compruebe que se cumple el teorema de Green para el campo vectorial $\vec{F}=P\vec{i}+Q\vec{j}$.

Problema 65

Un toro se puede representar paramétricamente por la función $\vec{\Phi}: D \to \mathbf{R}^3$, donde $\vec{\Phi} \equiv (x, y, z)$ está dada por

$$(x(\phi,\theta),\,y(\phi,\theta),\,z(\phi,\theta)) = ((b+a\cos\phi)\cos\theta,(b+a\cos\phi)\sin\theta,a\sin\phi)\;;$$

a y b son los radios menor y mayor del toro, y D es el rectángulo $[0,2\pi]\times[0,2\pi]$, es decir $0\leq\theta,\phi\leq2\pi$. Calcule el área del toro.

Problema 66

Calcule el área de la región de la superficie $x^2 + y^2 + z^2 = 1$ delimitada por su intersección con el cilindro $x^2 + y^2 - x = 0$.

Problema 67

Calcule $\int_S dS z$ donde S es el hemisferio superior de radio a.

Problema 68

Sea S la superficie cerrada formada por el hemisferio $x^2+y^2+z^2=1,\ z\geq 0$; y su base $x^2+y^2\leq 1,\ z=0$. Calcule el flujo del campo vectorial $\vec{F}=2x\vec{i}+2y\vec{j}+2z\vec{k}$ a través de dicha superficie.

Problema 69

Calcular directamente y mediante el teorema de Stokes el flujo del campo vectorial rot \vec{F} sobre S donde $\vec{F}(x,y,z)=(y,z,x)$ y S es la parte del paraboloide $z=1-x^2-y^2$ con $z\geq 0$.

Problema 70

Dado el campo vectorial $\vec{A} = z\vec{i} + x\vec{j} + y\vec{k}$, se pide que:

- (a) Calcule la integral de flujo del rotacional de \vec{A} a través de la zona esférica dada por $x^2 + y^2 + z^2 = 1$, $0 \le z \le 1/2$.
- (b) Calcule las integrales de línea del campo vectorial \vec{A} a lo largo de las circunferencias que limitan la zona esférica del apartado (a).
 - (c) ¿Cómo se relacionan los resultados obtenidos en los apartados (a) y (b)?

Problema 71

Calcule $\int_S d\vec{S} \cdot (\vec{\nabla} \times \vec{F})$ donde $\vec{F} = y\vec{i} - x\vec{j} + zx^3y^2\vec{k}$ y S es la superficie $x^2 + y^2 + 3z^2 = 1$, $z \le 0$.

Problema 72

Calcule el flujo de $\vec{G}(x, y, z) = 3xy^2\vec{i} + 3x^2y\vec{j} + z^3\vec{k}$ hacia el exterior de la esfera unidad.

Problema 73

Evalúe el flujo del campo vectorial $\vec{F}(x,y,z)=(xy^2,x^2y,zx^2+zy^2)$ a través de la superficie dada por $z=\sqrt{x^2+y^2}$ con $z\leq 2$, de forma directa. Compruebe el resultado utilizando el teorema de Gauss.