

UNIT 2 – Part II: Random Processes Spectral Characteristics

Gabriel Caffarena Fernández 3rd Year Biomedical Engineering Degree EPS – Univ. San Pablo – CEU

Spectral characteristics of Random Processes

- A random process can be studied in the frequency domain by means of the power density spectrum
- The power density spectrum is also related to the autocorrelation
- It can be used to analyze the frequency components of an r.p.

Random signals: 2-2: Random Processes

Also, it can be used to analyze the effect that LTI systems have on r.p.

Spectral characteristics of Random Processes

• The spectral properties of a deterministic signal x(t) are contained in its Fourier Transform $X(\omega)$

$$X(\omega) = \int_{-\infty}^{\infty} x(t)e^{-j\omega} dt$$

- However the FT cannot be directly applied to a r.p., due to the fact that not all sample functions have a valid FT
- However, using a power density function solves this problem, leading to the

Power Density Spectrum

First, let us define the **portion sample function** $x_T(t)$

Random signals: 2-2: Random Processes

$$\mathbf{x}_{\mathrm{T}}(t) = \begin{cases} x(t) & -T < t < T \\ 0 & elsewhere \end{cases}$$

• The FT of $x_T(t)$ is

$$X_{\mathrm{T}}(\omega) = \int_{-\infty}^{\infty} x_{T}(t)e^{-j\omega t}dt = \int_{-T}^{T} x(t)e^{-j\omega} dt$$

The energy of $x_T(t)$ is called E(T) and it is related to both x(t) and $X_T(\omega)$ (by means of Parserval's theorem)

$$E(T) = \int_{-T}^{T} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X_T(\omega)|^2 d\omega$$

We can obtain the power of $x_T(t)$ by averaging its energy

$$P(T) = \frac{1}{2T} \int_{-T}^{T} x^2(t) dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} \frac{|X_T(\omega)|^2}{2T} d\omega$$

- We can infer that $\frac{|X_T(\omega)|^2}{2T}$ is a power density spectrum
- To obtain the power of a r.p. X(t), P_{XX} , we have to account for the following:
 - T must tend to ∞
 - We must use X(t) instead of x(t), which is random

- So, we have to
 - Apply the limit when $T \rightarrow \infty$
 - Use $E[X^2(t)]$ instead of $X^2(t)$

• So now we can define the power of a r.p. X(t) as

$$P_{XX} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E[X^{2}(t)] dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{E[|X_{T}(\omega)|^{2}]}{2T} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) d\omega \text{ [W]}$$

- We call $S_{XX}(\omega)[\frac{W}{Hz}]$ the power density function
- Note that

$$P_{XX} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E[X^{2}(t)] dt = A[E[X^{2}(t)]]$$

$$\xrightarrow{X(t) \text{ w.s.s.}}$$

Example: Find the average power of the r.p.

$$X(t) = A_0 \cos(\omega_0 t + \Theta)$$

where A_0 and ω_0 are constants and $\Theta \sim U(0, \frac{\pi}{2})$

$$P_{XX} = A[E[X^{2}(t)]] = A\left[\frac{A_{0}^{2}}{2} - \frac{A_{0}^{2}}{\pi}sin(2\omega_{0}t)\right] = \frac{A_{0}^{2}}{2}$$

Properties of the Power Density Spectrum

- $S_{XX}(\omega)$ is real and ≥ 0
- $S_{XX}(-\omega) = S_{XX}(\omega)$
- $\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathcal{S}_{XX}(\omega) d\omega = A[E[X^2(t)]] = P_{XX}$

•
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) e^{j\omega\tau} d\omega = A[R_{XX}(t, t + \tau)]$$
 $\xrightarrow{A(t) \text{ w.s.s.}}$ $R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) e^{j\omega\tau} d\omega$

•
$$S_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(t, t + \tau) e^{-j\omega\tau} d\tau$$

$$X(t)$$
 w.s.s.

$$R_{XX}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XX}(\omega) e^{j\omega\tau} d\omega$$

$$X(t)$$
 w.s.s.

$$\mathcal{S}_{XX}(\omega) = \int_{-\infty}^{\infty} R_{XX}(\tau) e^{-j\omega\tau} d\tau$$

Properties of Power Density Spectrum

Example: Find the p.d.s. of r.p. with autocorrelation

$$R_{XX}(\tau) = (A_0^2/2)\cos(\omega_0 \tau)$$

where A_0 and ω_0 are constants

$$S_{XX}(\omega) = TF\{R_{XX}(\tau)\} = (A_0^2 \pi/2))[\delta(\omega - \omega_0) + \delta(\omega + \omega_0)]$$

The Cross-Power Density Spectrum

We define the cross-power of r.p. X(t) and Y(t) as

$$P_{XY} = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} E[X(t)Y(t)]dt$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} \lim_{T \to \infty} \frac{E[X_T^*(\omega)Y_T(\omega)]}{2T} d\omega$$

$$= \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XY}(\omega) d\omega$$

We call $S_{XY}(\omega)$ the cross-power density function

Random signals: 2-2: Random Processes

Note that

$$P_{XY} = A[E[X(t)Y(t)]] \xrightarrow{\text{j.w.s.s.}} P_{XY} = E[X(t)Y(t)] = R_{XY}(0)$$

Properties of the Cross-Power Density Spectrum

•
$$S_{XY}(\omega) = S_{YX}(-\omega) = S_{YX}^*(\omega)$$

- $Re[S_{XY}(\omega)]$ and $Re[S_{YX}(\omega)]$ are **even** functions of ω
- $Im[S_{XY}(\omega)]$ and $Im[S_{YX}(\omega)]$ are **odd** functions of ω
- If X(t) and Y(t) are orthogonal then $S_{XY}(\omega) = S_{YX}(\omega) = 0$

•
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XY}(\omega) d\omega = A[E[X(t)Y(t)]] = P_{XY}$$

 $P_{XY} = E[X(t)Y(t)] = R_{XY}(0)$

Properties of the Cross-Power Density Spectrum

•
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XY}(\omega) d\omega = A[E[X(t)Y(t)]] = P_{XY}$$
 $\xrightarrow{\text{j.w.s.s.}} P_{XY} = E[X(t)Y(t)] = R_{XY}(0)$

•
$$\frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XY}(\omega) e^{j\omega\tau} d\omega = A[R_{XY}(t, t + \tau)] \xrightarrow{j.w.s.s.} R_{XY}(\tau) = \frac{1}{2\pi} \int_{-\infty}^{\infty} S_{XY}(\omega) e^{j\omega\tau} d\omega$$

•
$$S_{XY}(\omega) = \int_{-\infty}^{\infty} R_{XY}(t, t + \tau) e^{-j\omega\tau} d\tau$$

 $\xrightarrow{j.w.s.s.} S_{XY}(\omega) = \int_{-\infty}^{\infty} R_{XY}(\tau) e^{-j\omega\tau} d\tau$

• If X(t) and Y(t) are uncorrelated with constant means \overline{X} and \overline{Y} then

$$S_{XY}(\omega) = 2\pi \overline{XY} \delta(\omega)$$

Noise

Noise in present in bioinstrumentation systems

- Noise degrades the quality of the signal under study
- It is interesting to characterize noise through the power density spectrum
- Knowing the spectrum of noise helps to design better bioinstrumentation systems
 - For instance, we can filter noise that is outside the bandwidth of the signal

White Noise

A white noise has a constant p.d.s.

$$S_{NN}(\omega) = N_0/2$$

where N_0 is a real positive constant

The autocorrelation is

$$R_{NN}(\tau) = \left(\frac{N_0}{2}\right)\delta(\tau)$$

- It is unrealizable since its power is infinite
- However, there are real cases where noise is almost constant for a wide bandwidth, so it can be approximated as a white noise

Band-limited White Noise

White noise is filtered to reduce its effect on the quality of a processing algorithm

- If we assume an ideal filter, the resulting p.d.s. is constant in a limited interval of frequencies
- If a lowpass filter is applied to the noise (because the signal is lowpass), the resulting p.d.s and autocorrelation are

$$S_{NN}(\omega) = \begin{cases} P\pi/W & -W < \omega < W \\ 0 & elsewhere \end{cases}$$

Random signals: 2-2: Random Processes

The autocorrelation is

$$R_{NN}(\tau) = P \frac{\sin(W\tau)}{W\tau}$$

Band-limited White Noise

If a bandpass filter is applied to the noise (because the signal is bandpass), the resulting p.d.s and autocorrelation are

$$S_{NN}(\omega) = \begin{cases} P\pi/W & \omega_0 - \left(\frac{W}{2}\right) < |\omega| < \omega_0 + \left(\frac{W}{2}\right) \\ 0 & elsewhere \end{cases}$$

Random signals: 2-2: Random Processes

The autocorrelation is

$$R_{NN}(\tau) = P \frac{\sin(\frac{W\tau}{2})}{\frac{W\tau}{2}} \cos(\omega_0 \tau)$$

Band-limited White Noise

CHALLENGE: Compute the power of a band-limited white noise as a function of W $(W<2\omega_0)$

Linear systems with random inputs

Consider an LTI system fed with a random process X(t) with known $R_{\times\times}(t)$

- It is possible to find
 - The mean, variance and autocorrelation of the output: \bar{Y} , σ_Y^2 , $R_{YY}(\tau)$
 - The p.d.s. of $Y(t) \rightarrow S_{yy}(\omega)$
 - The cross-correlation between the input and the output of the system

$$R_{XY}(\tau)$$
 $R_{YX}(\tau)$

The cross-p.d.s. between the input and the output of the system

$$S_{XY}(\omega)$$
 $S_{YX}(\omega)$

Mean and second moment of Y(t)

We base our calculations on the fact that $Y(t)=X(t)^*h(t)$

- We regard X(t) and Y(t) as **j.w.s.s.**
- For the mean:

$$E[Y(t)] = E\left[\int_{-\infty}^{\infty} h(u)X(t-u)du\right] = \int_{-\infty}^{\infty} h(u)E[X(t-u)]du$$
$$= \bar{X}\int_{-\infty}^{\infty} h(u)du = \bar{Y}$$

Mean and second order of Y(t)

As for the second order moment:

$$\begin{split} E[Y^{2}(t)] &= E\left[\int_{-\infty}^{\infty} h(u_{1})X(t-u_{1})du_{1} \quad \int_{-\infty}^{\infty} h(u_{2})X(t-u_{2})du_{2}\right] \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[X(t-u_{1})X(t-u_{2})] h(u_{1})h(u_{2})du_{1}du_{2} \\ &= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{XX}(u_{1}-u_{2}) h(u_{1})h(u_{2})du_{1}du_{2} \end{split}$$

Mean and second order of Y(t)

Example: LTI system with white noise as input:

$$\overline{N} = 0$$
 and $R_{NN}(\tau) = \left(\frac{N_0}{2}\right)\delta(\tau)$

$$\overline{Y} = 0$$

$$E[Y^{2}(t)] = \left(\frac{N_{0}}{2}\right) \int_{-\infty}^{\infty} h^{2}(u) du$$

Autocorrelation of Y(t)

For the autocorrelation we have:

$$R_{YY}(t, t + \tau) = E[Y(t)Y(t + \tau)]$$

$$= E\left[\int_{-\infty}^{\infty} h(u_1)X(t - u_1)du_1 \int_{-\infty}^{\infty} h(u_2)X(t + \tau - u_2)du_2\right]$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} E[X(t - u_1)X(t + \tau - u_2)] h(u_1)h(u_2)du_1du_2$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} R_{XX}(\tau + u_1 - u_2) h(u_1)h(u_2)du_1du_2$$

$$= R_{YY}(\tau) * h(-\tau) * h(\tau)$$

$$R_{YY}(t, t + \tau) = R_{XX(\tau)} * h(-\tau) * h(\tau)$$

Cross-Correlation of Y(t)

Following an analysis similar to the one we applied to the autocorrelation:

$$R_{XY}(\tau) = R_{XX}(\tau) * h(\tau)$$
$$R_{YX}(\tau) = R_{XX}(\tau) * h(-\tau)$$

$$R_{YY}(\tau) = R_{XY}(\tau) * h(-\tau)$$

 $R_{YY}(\tau) = R_{YX}(\tau) * h(\tau)$

Cross-correlation of Y(t)

Example: Compute R_{YN} and R_{NY} given the following LTI system with a white noise as

input:

$$\overline{N} = 0$$
 and $R_{NN}(\tau) = \left(\frac{N_0}{2}\right)\delta(\tau)$

$$R_{NY}(\tau) = \left(\frac{N_0}{2}\right)h(\tau)$$

$$R_{YN}(\tau) = \left(\frac{N_0}{2}\right)h(-\tau) = R_{NY}(-\tau)$$

Power Density Spectrum of Y(t)

Given that the auto- and cross-p.d.s. are the Fourier Transform of the autoand cross-correlations:

•
$$R_{XY}(\tau) = R_{XX}(\tau) * h(\tau)$$
 \rightarrow $S_{XY}(\omega) = S_{XX}(\omega)H(\omega)$

•
$$R_{YX}(\tau) = R_{XX}(\tau) * h(-\tau)$$
 \rightarrow $S_{YX}(\omega) = S_{XX}(\omega)H^*(\omega)$

•
$$R_{YY}(\tau) = R_{XY}(\tau) * h(-\tau)$$
 \rightarrow $S_{YY}(\omega) = S_{XY}(\omega)H^*(\omega)$

•
$$R_{YY}(\tau) = R_{YX}(\tau) * h(\tau)$$
 \rightarrow $S_{YY}(\omega) = S_{YX}(\omega)H(\omega)$

•
$$R_{YY}(\tau) = R_{XX}(\tau) * h(\tau) * h(-\tau) \rightarrow S_{YY}(\omega) = S_{XX}(\omega) |H(\omega)|^2$$

Cross-correlation of Y(t)

Example: Find the p.d.s. and power of of Y(t):

$$S_{NN}(\omega) = \left(\frac{N_0}{2}\right) \qquad \chi(t)$$

$$|H(\omega)|^2 = \frac{1}{1 + \left(\frac{\omega L}{R}\right)^2}$$

$$S_{YY}(\omega) = \frac{N_0/2}{1 + \left(\frac{\omega L}{R}\right)^2}$$

$$P_{YY} = \frac{N_0 R}{4L}$$

SUMMARY

- Power density spectrum
- Noise
- Random processes and LTI systems

