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Spectral characteristics of Random Processes

« Arandom process can be studied in the frequency
domain by means of the power density spectrum -

« The power density spectrum is also related to the i
autocorrelation @

Ryn(T)

* |t can be used to analyze the frequency components p
of an r.p.

» Also, it can be used to analyze the effect that LTI
systems have on r.p.
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Spectral characteristics of Random Processes

The spectral properties of a deterministic signal x(t) are contained in its Fourier
Transform X(w)

X(w) = joox(t)e"j“’ dt

However the FT cannot be directly applied to a r.p., due to the fact that not all
sample functions have a valid FT

However, using a power density function solves this problem, leading to the

Power Density Spectrum
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Power Density Spectrum

First, let us define the portion sample function x(t)

x(t) -T<t<T
t) =
xr(t) { 0 elsewhere

The FT of xp(t) is

oo

Xr(w) = [© xp(De@tde=["_ x(t)e™® dt

The energy of x¢(t) is called E(T) and it is related to both x(t) and Xt(w) (by means
of Parserval’s theorem)

E(T) = [ x2(t)dt = — [ |X(w)[?do
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Power Density Spectrum

We can obtain the power of x(t) by averaging its energy

1 T 1 oo |X7(w)]?
P(T)=§f_Tx2(t)dt=E_oo Tz;) dw

| X7 (w)]?

We can infer that s IS a power density spectrum

To obtain the power of a r.p. X(t), Py, we have to account for the following:
= Tmusttendto o

= We must use X(t) instead of x(t), which is random

So, we have to L]

= Apply the limit when T>

= Use E[X?(t)] instead of X2(t)
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Power Density Spectrum

« So now we can define the power of ar.p. X(t) as

. 1 T
Pyx = lim — J_, E[X*(®)]dt

T —oo

o 2
1 lim E[|XT(w)| ]da)

2" —P Tooo 2T

= if_oooo Sxx(w)dw [W]

 We call SXX(a))[%] the power density fungfion

 Note that
X(t) w.s.s.

_

Pyx = Jim o [1 E[X2(D)]de=A[E[X?(0)] Pyx = E[X2(8)]] = Rxx(0)
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Power Density Spectrum

« Example: Find the average power of the r.p.

X(t) = Agcos(wyt + 0)

where 4, and w are constants and ©® ~ U(0, g)

2 A%) A% : A%
Pyx = A[E[X (t)]] - A[7 — ?Sm(Zwot) | = 7
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Properties of the Power Density Spectrum

Syx(w) isrealand > 0

Sx(—w) = Syx (W)

= [7 Sxx(w)dw= A[E[X?(6)]] = Py
= [% Syx(@)e/Tdw= AlRgx (4, t + )]

21TV —®

Sxx(w) = fjooo Rxx(t, t + 1)e/®"dr

Random signals: 2-2: Random Processes

X(t) w.s.s.

X(t) W.s.s.

1 oo ;
Rxx(7) = Ef-oo Sxx(w)e’/“ dw

Sxx(@) = 7 Ryx(D)e™/Tdr
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Properties of Power Density Spectrum

(@)

Ryx(7)
« Example: Find the p.d.s. of r.p. with autocorrelation )
Rxx (1) = (A/2)cos(wgT) /
where A, and w, are constants
Sxx(w) = TF{Rxx(1)} = (A§7/2))[8(w—w) + S(w+wy)] B
(o)

— g 0 Wy w
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The Cross-Power Density Spectrum

« We define the cross-power of r.p. X(t) and Y(t) as

Pyy = Jim - [1 E[X(®)Y (D)]de =

_ 1oy EXG@)Yr@)] o
2TV~ TS0 2T

1 00
- Ef_oo Sxy(w)dw
« We call Sy (w) the cross-power density function

 Note that

J.W.S.S.

Pyy =A[E[X(O)Y(D)]] = Pxy = E[X(®)Y(£)] = Rxy(0)
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el espectro cruzado es la transformada de fourier, pero no queremos eso.

La potencia cruzada es lo unico que vamos a necesitar, integrando


Properties of the Cross-Power Density Spectrum [

* Sxy(w) = Syx(—w) = Syx(w)
* Re|Syy(w)] and Re|Syx(w)] are even functions of w

o Im|Syy(w)] and Im|[Syx(w)] are odd functions of w

« IfX(t) and Y(t) are orthogonal then Syy(w) = Syx(w) =0

o = [ Syy(w)dw=A[E[X()Y(£)]]=Pxy — Pxy= E[X(£)Y(t)] = Rxy(0)

21T Y —®
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Properties of the Cross-Power Density Spectrum

J.W.S.S.

— [% Sxy(@)dw=A[E[X(O)Y(O]]FPyy —+ Pxy= E[X(D)Y(D)] = Ryy(0)

o , J.W.S.S. . _
Lf Syy(w)e!®Tdw=A[Ryy(t,t+7)] ——— Rxy(7) = %f_oo Syy(@)el“Tdw 0

21T YV —00

- _ J.W.S.S. - _
Sxy(w) = |__ Rxy(t,t+1)e/“%dr — »Syy(w) = [__ Rxy(r)e™/®%dr
If X(t) and Y(t) are uncorrelated with constant means X and Y then 0

Syy(w) = 2nXY 8 (w)
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Noise

* Noise in present in bioinstrumentation systems
* Noise degrades the quality of the signal under study
* ltis interesting to characterize noise through the power density spectrum

« Knowing the spectrum of noise helps to design better bioinstrumentation
systems

= Forinstance, we can filter noise that is outside the bandwidth of the signal
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White Noise

« A white noise has a constant p.d.s.

Syn(w) = Ny/2

where N, is a real positive constant

o Ran(@) Fran(©)
« The autocorrelation is w Wi

Noi2) No/2

Ran(1) = () 8(r)

0 T 0 ®
* |tis unrealizable since its power is infinite

« However, there are real cases where noise is almost constant for a wide
bandwidth, so it can be approximated as a white noise

» CEU
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Band-limited White Noise

Fanlo)
« White noise is filtered to reduce its effect on the quality of a a
processing algorithm
- If we assume an ideal filter, the resulting p.d.s. is constant in L O |
a limited interval of frequencies
- If a lowpass filter is applied to the noise (because the signal -
is lowpass), the resulting p.d.s and autocorrelation are
_N\Pr/W W<w<W
Sy (@) = { 0 elsewhere
- The autocorrelation is £\ O A
sin(WT) _L,\-/_H ;rr\./an
RNN (T) =P —— W w w w

Wt
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Band-limited White Noise

 If a bandpass filter is applied to the noise (because
the signal is bandpass), the resulting p.d.s and vl 0 F v ’
autocorrelation are

Ry (®)
Pr/W (W) <ol < wp + (X 0
T Wo — | = Wl < w — /
Sy (w) = / 0 2 0+ ( 2 ) / \\
0 elsewhere
. . ’I \\
- The autocorrelation is Ty "*\\/ \')'., N Nor -
- / - ~ T
6 ) 491\\ ’/ 2 n\\] VEI::\M//4R (€4
sin(g) W W W \\ :’I W W W
RN (T) = P—o7 = cos(wT) \ /
N Y
L7/
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Band-limited White Noise

CHALLENGE: Compute the power of a band-limited white noise as a function of W

(W<2ay)
Fanler)
- I -
N,/2
ity 0 &g i
F W W i
_IIJ.":'__E — by, 4 - oy — 7 LILE +
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Linear systems with random inputs

« Consider an LTI system fed with a random process X(t) with known Ry (t)

Xt) — T Y

system

h(t)
* |tis possible to find H(w)

= The mean, variance and autocorrelation of the output: Y, o2, Ryy (1)
= The p.d.s.of Y(t) 2 Syy(w)

= The cross-correlation between the input and the output of the system

Ryv(7) Ryx(1)
* The cross-p.d.s. between the input and the output of the system
Sxy (W) Syx(w)
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Mean and second moment of Y(t)

Xt) — T Y

system

h(t)
H(w)

« We base our calculations on the fact that Y (t)=X(t)*h(t)
« We regard X(t) and Y(t) as j.w.s.s.

 For the mean:
E[Y(®OI=E[[_. h)X(t —wdu]=f"_ h@E[X(t — w)]du

= )?f_oooo h(wWdu=Y

& crv
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Mean and second order of Y(t)

X (t) LT

system

h(?)
H(w)

 As for the second order moment;

E[Y2(O1=E [ [_, hu)X (t —u)duy - h(ux)X(t — up)du_

=" [% E[X(t — u)X(t — up)] h(ug)h(uy)dudu,

- fjooo f_oooo Ryx(u; —uy) h(ug)h(uy)du,du,

Random signals: 2-2: Random Processes
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Mean and second order of Y(t)

Example: LTI system with white noise as input:

N —  geem [ Y(D)

system

h(1)
H(w)

N=0 and Ryy(t) = (’%) 5(1)

0

~l
I

E[Y2(t)] (’%) [° h2(w)du
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Autocorrelation of Y(t)

 For the autocorrelation we have:
Ryy(t,t + 1) = E[Y(®)Y(t + 7)]

00)

=F Uoo h(u)X(t —uqy)du, f h(u,) ) X(t + 17— u,)du,

=% [ E[X(t — u)X(t + T — up)] h(uy)h(uy)du, du,
= fjooo f_oooo Rxx (T +u; —uy) h(u)h(uy)du,du,

= Ryx(7) * h(=1) * h(7)

Ryy(t,t + ) = Rxx(r) * h(—7) * h(7)
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Cross-Correlation of Y(t)

Xt) — T Y

system

h(t)
H(w)

Following an analysis similar to the one we applied to the autocorrelation:

Rxy(t) = Rxx(7) * h(1)
Ryx(t) = Rxx(7) * h(—T)

Ryy(t) = Rxy(7) * h(—T)
Ryy(t) = Ryx(7) * h(T)

Degree in Biomedical Engineering
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Cross-correlation of Y(t)

Example: Compute Ryy and Ryy given the following LTI system with a white noise as
input:

N — g [ Y(D)

system

h(t)
H(w)

N =0 and Ryy(7) = (%) 5(1)

R (D) = (52) (@

) h(~7) = Ryy(~T)
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Power Density Spectrum of Y(t)

X (t) LT

system

h(t)
H(w)

Given that the auto- and cross-p.d.s. are the Fourier Transform of the auto-

and cross-correlations:

" Ryy(7) = Rxx(7) * h(7)

" Ryx(7) = Rxx(7) * h(-7)
" Ryy(7) = Rxy(7) * h(=7)

" Ryy(t) = Ryx(7) * h(7)

Ryy(t) = Rxx(7) * h(7) * h(—T)

Random signals: 2-2: Random Processes

v v bV

Sxy(w) = Sxx(w)H(w)
Syx(w) = Sxx(w)H* (w)
Syy(w) = Syy(w)H* (w)

Syy(w) = Syx(w)H(w)

Syy(w) = Sxx(w)|H(w)|*
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Cross-correlation of Y(t)

Example: Find the p.d.s. and power of of Y(t) :

L

N o—————0000 0
Sy (w) = (70) X(t) ¢ Y(t)
1
|H(w)|? =
1+ (%)
Syy(w) = %
1+(%)
__ NgR
YY =
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SUMMARY

* Power density spectrum
* Noise

 Random processes and LTI systems
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