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Course Aims and Objectives

formulate the weak Galerkin approximation for PDEs in one or more
spatial dimensions

define Dirichlet and Neumann boundary conditions and explain how
to enforce them within the Galerkin finite element framework

show how an elemental decomposition and numerical integration may
be used to construct the global matrix system arising from the
Galerkin finite element technique

recognise the applicability of the finite element method across many
fields of engineering

extend the developed method to the solution of time-dependent
(parabolic) problems
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A brief history of the Finite Element Method

The finite element method was initially developed from matrix methods of
structural analysis.

@ FEM has its beginnings in WW |l aerospace

o Early pioneers: Argyris (this department); Clough (coined the term
‘finite element’ in 1960)

o FEM originally confined to structural analysis — aerospace and civil
engineering

@ Rigorous mathematical foundation developed in the 1970s —
application to CFD, heat transfer, finance, ...

The disparate origins mean that multiple words are often used to express
the same concept.
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Course Approach

We will focus on the FEM as a tool to solve PDEs rather than on specific

fields of engineering.

@ 10 Lectures and 1 Tutorial
@ The lectures will combine both slides and the visualizer

@ Assessment is 100% by coursework

The coursework will require approximately 1 week of work.
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Boundary Conditions
We start with some important definitions.

@ A Dirichlet boundary condition specifies the value of a solution on
the boundary of a domain.

@ A Neumann boundary condition specifies the value of the derivative
of a solution on the boundary of a domain.

@ An Essential boundary condition is one which must be specified in
the integral statement of a problem.

@ A Natural boundary condition is one which arises as a natural
consequence of the integral statement of a problem.

A boundary condition can be mixed, i.e. a combination of a Dirichlet and
Neuman condition
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Strong and Weak forms

@ The Strong form of an equation, denoted (S), is the familiar form of
a PDE in which differentiation is carried out of the dependent
variables, and both Dirichlet and Neumann boundary conditions are
specified as required.

e The Weak form of an equation, denoted (W), is an integral form of
a PDE, specifically:

“... a weighted integral statement of a differential equation in which
the differentiation is transferred from the dependent variable to the
weight function such that all natural boundary conditions of a
problem are included in the integral statement.”

— Reddy
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Symmetric and Bilinear Functions

We denote a(+,-) and (-, -) to be symmetric bilinear forms.

A symmetric function has the property:

a(u,v) = a(v,u)

(U7 V) = (V7 U)
A bilinear function has the property:

a(ciu+ v,w) = ca(u,w)+ ca(v,w)
(au+av,w) = c(u,w)+c(v,w)
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The Ritz Method

We require the solution v to the variational equation

B(w,u) = I(w)

We approximate u as the weighted sum of a series of n
linearly-independent basis functions

de ) + do(x) ~ u

in which d; are ‘Ritz coefficients’ chosen such that for each

w = ¢; (i = 1...n), B(w, u) = I(w) holds for n different choices of w, and
¢j (j = 0...n) are approximation functions chosen such that uj, satisfies the
essential boundary conditions.
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The Ritz Method

Substituting the approximate solution into the variational equation gives

B(¢i, > dij + do) = I(e))
J

Invoking the bilinearity of B(-,-) allows us to re-express this as

Z B(¢i, ¢)d; = I(¢i) — B(¢i, bo)
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The Ritz Method

Substituting the approximate solution into the variational equation gives

B(¢i, > dij + do) = I(e))
J

Invoking the bilinearity of B(-,-) allows us to re-express this as

Z B(¢i, ¢)d; = I(¢i) — B(¢i, bo)

This may be more concisely expressed as the matrix equation

[Kil{dj} = {Fi}

Coefficients d; are obtained by inversion of the matrix Kj;. The
approximation functions ¢; are known, and hence the approximate solution
Up =~ u may be determined.
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Weighted Residual Methods

A generalization of the Ritz method and applicable to a much broader
class of problems. We consider the general boundary value problem

A(u)=f onQ

in which A(-) is a linear or nonlinear operator, and € is the domain over
which the problem is specified.

Visualizer

Weighted residuals and the Petrov-Galerkin method
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The Galerkin Method

The weight functions are identical to the approximations functions

Yi = ¢;

As with the Petrov-Galerkin method, the weighted residual integral may be
represented as a matrix equation

[Kil{dj}y = {fi}

but now the matrix [Kj;] is symmetric which has useful implications for the
efficiency of solution.

If it is possible to transfer differentiation from the dependent variables to
the weight functions via integration by parts to obtain the weak form of
the problem, then the Galerkin method is identical to the Ritz method and
is used synonymously.
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Summary

Key points of this section:

@ We have introduced the weighted residuals method for the solution of

the general BVP
Aluy=f onQ

@ This has been shown to be equivalent to the Galerkin method in
special cases

@ The Galerkin method forms the basis of the F.E.M.

In the following section we will apply this approach to a simple 1-D
problem and introduce the concept of ‘finite element’

M. Santer (Aero) F.E.M.

12 /12



