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Section Objectives

We now have a firm mathematical grounding of the principles behind the
finite element method. However, it is of interest to go back to the original
Direct Stiffness Method which was developed in the 1930s from physical
principles. This provides a starting point for a more ‘structural’ approach
to finite element analysis but several parallels with the mathematical
approach will become clear.

In this section we will:

Contextualize the motivation behind the development of matrix
methods for structural analysis

Introduce the stiffness matrix for a simple rod element

Use the direct stiffness method to solve for forces and displacements
in a statically-indeterminate framework.
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Background

In the 1930s, aircraft structures were becoming increasingly complicated
and less amenable to solution by traditional hand calculation techniques.

The Mk. 2 Vickers Wellington: geodetic sub-structure
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Background
The geodetic skeleton of the Wellington bomber allowed it to sustain an
incredible amount of battle damage.

Battle damage in the tail of a Wellington Bomber

The analysis complexity of such a structure is, however, greatly increased.
By noting that the structure consists of a large number of similar
connected sub-components we start to move towards a finite element-type
analysis methodology.
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Direct Stiffness Method

Our approach is to characterize the force-displacement relationship for an
individual sub component using classical structural analysis, which allows
us to determine its stiffness. By coupling the interconnected stiffnesses we
can assemble a matrix which represents the stiffness of the complete
structure.

By way of illustration we will consider one of (if not) the simplest
structural components: the unidirectional rod. This can sustain tensile or
compressive forces in the axial direction, and will extend or compress in
length accordingly in response.

The approach can be extended and refined for more complex structural
components — beams, beam columns, plates, shells — until eventually
becoming practically indistinguishable from the finite element method.
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The Uniaxial Structural Rod Element
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We introduce a uniaxial rod of length L, cross-sectional area A, fabricated
from a linear elastic material of Young’s modulus E . The rod is defined
with respect to local axial coordinate ξ and transverse coordinate η, and is
positioned an an orientation θ with respect to the global coordinate system
(x , y).

At ends (nodes) 1 and 2 we define axial forces p1 and p2, and
corresponding displacements u1 and u2 all defined in the positive direction
ξ.
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Directly Calculated Elemental Stiffness Matrix
From force equilibrium we can immediately write that p1 = −p2.

We then apply Hooke’s Law in 1-D to determine the relationship between
force and displacement at each node in local coordinates

σ = Eε where σ is stress, and ε is strain
p1

A
=

E (u1 − u2)

L

hence

p2 = −p1 =
AE

L
(u2 − u1)

which in matrix form gives{
p1

p2

}
=

AE

L

[
1 −1
−1 1

]{
u1

u2

}
or

p = ku
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Global-to-Local Coordinate Transformation

We can relate global displacements U to local displacements u via the
direction cosines

u = U cos θ + V sin θ

v = −U sin θ + V cos θ

or more concisely for the displacements at both ends as
u1

v1
u2

v2

 =


c s 0 0
−s c 0 0
0 0 c s
0 0 −s c




U1

V1

U2

V2


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Local-to-Global Coordinate Transformation

If we define P as the vector of horizontal and vertical externally-applied
nodal forces we can relate them to the local axial forces by the same
transformation. This gives

u = DU

p = DP

where D is the matrix of direction cosines. Matrix D can readily be shown
to be orthogonal and hence D−1 = D>.

We can therefore express the local-to-global tranformation as

U = D>u

P = D>p
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Global Elemental Stiffness Matrix

We can generate a global elemental stiffness matrix as follows. We have
already defined

p = ku

Applying the local-to-global transformation gives

P = [D>kD]U or P = KU

local stiffness matrix

k =
AE

L


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0


global stiffness matrix

K =
AE

L


c2 cs −c2 −cs
cs s2 −cs −s2

−c2 −cs c2 cs
−cs −s2 cs s2


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Assembly and Solution

Having defined an elemental stiffness matrix for the 1-D structural rod
element in global coordinates, the analysis of frameworks consisting of
several rod sub-components is best illustrated by example.

Visualizer

Find the bar forces and deflected shape for the statically-indeterminate
framework shown using the direct stiffness method.
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Summary

We have very briefly introduced the direct stiffness method — a direct
antecedent of the finite element method.

Although it is much less refined, many of the same concepts are involved,
including:

local element definition

local-to-global transformation

assembly of full system stiffness matrices
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