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‘The Simple Linear Regression Model

Definition of the simple linear regression model

"Explains variable y in terms of variable x"

Intercept Slope parameter

.

y = PBo+ Brz+u

7

Dependent variable

. Error term,
Independent variable disrurhanice.

unobservables,. ..
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- The Simple Linear Regression Model

TABLE 2.1 Terminology for Simple Regression

y X
Dependent variable Independent variable
Explained variable Explanatory variable
Response variable Control variable
Predicted variable Predictor variable
Regressand Regressor

The Simple Linear Regression Model 5
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‘The Simple Linear Regression Model

Interpretation of the simple linear regression model

"Studies how y varies with changes in x"

@_ ou

31 as long as =0

oz ox \
By how much does the dependent Interpretation only correct if all other
variable change if the independent things remain equal when the indepen-
variable is increased by one unit? dent variable is increased by one unit

The Simple Linear Regression Model
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‘The Simple Linear Regression Model

Example: A simple wage equation

wage = B + BFreduc + ve

/ Labor force experience,

tenure with current employer,

k ethic, intelli
Measures the change in hourly wage i i S

given another year of education,
holding all other factors fixed

Limitation: linearity implies that a one-unit change in x has the same effect
on ¥ regardless of the initial value of x This is unrealistic for many
economic applications.

The Simple Linear Regression Model
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‘The Simple Linear Regression Model

When is there a causal interpretation?

Conditional mean independence assumption

The explanatory variable must not
E (u | X) = F (u) =0 contain information about the mean
of the unobserved factors

Example: wage equation

The conditional mean independence assumption is unlikely to hold because
individuals with more education will also be more intelligent on average.

The Simple Linear Regression Model
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‘The Simple Linear Regression Model

Population regression function (PFR)

The conditional mean independence assumption implies that

E(ylz) = E(Bo + B1z + ulz)
= Bo + 1z + E(ulr)

= Bo + B1x

This means that the average value of the dependent variable can be expressed as

a linear function of the explanatory variable

The Simple Linear Regression Model
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‘The Simple Linear Regression Model

Standard assumptions for the linear regression model

Assumption SLR.1 (Linear in parameters)

y = 50 + 61 z + u In the population, the relationship

between y and x is linear

Assumption SLR.2 (Random sampling)

{(xiv yi) o =1,... n} The data is a random sample

drawn from the population

_ Each data point therefore follows
y; = Bo + Biz; + u; :

the population equation

The Simple Linear Regression Model 11
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‘The Simple Linear Regression Model

Standard assumptions for the linear regression model

Assumption SLR.3 (Sample variation in explanatory variable)
n
Z ( . _) 2 >0 The values of the explanatory variables are not all
_ Ly — & the same (otherwise it would be impossible to study
=1 how ditferent values of the explanatory variable
lead to different values of the dependent variable)

Assumption SLR.4 (Zero conditional mean)

FE(ui|z;) =0

The value of the explanatory variable must
contain no information about the mean of
the unobserved factors

The Simple Linear Regression Model 12



‘The Simple Linear Regression Model

HOW TO ESTIMATE THE'PARAMETERS OF THE MODEL

In order to estimate the regression model we need data: A random sample from the

population
(CE‘ 1, Y 1) <€—— Tirst observation
(332, y2) <€—— Second observation

(283, y3) <€—— Third observation

((En, yn) <€—— n-th observation

The Simple Linear Regression Model
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{(z;y;) : i=1,...n}

Value of the dependent
variable of the i-th ob-
servation

Value of the expla-

natory variable of

the i-th observation

13
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" The Simple Linear Regression Model

Fit as good as possible a regression line through the data points:

14

For example, the i 1 th
data point (z;,y;)

\}
/\

o

Fitted regression line

2 yZBo+B1X

| >y, = fitted value
X

1 Xi

The Simple Linear Regression Model
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‘The Simple Linear Regression Model

HOW TO ESTIMATE THE PARAMETERS OF THE MODEL

Two unknowns and two equations:
E(y —Bo—P1x) =0
E[x(y = Bo = p1x)] = 0

Gtiven the data, we choose the estimates that solve the sample counterpart of the
system of equations above.

Bo=7— pix
5 e (=D (i-)
PL= =50 2

The Simple Linear Regression Model 15
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‘The Simple Linear Regression Model

HOW TO ESTIMATE THE PARAMETERS OF THE MODEL
,Bo =y — ,319Z

g - =1 (=D YY)
- y1 r=x)2

These estimates are called the Ordinary Least Squares (OLS)
estimates of [ and f;. In this session we will learn why they
receive this name.

The Simple Linear Regression Model 16
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Estimation — Ordinary Least Squares

Fitted value: 9; = By + f1x;
Regression residuals : difference between the actual and the fitted value.

—

u; = y; — Yi = Yi — PBo — Br;
Minimize sum of squared regression residuals
- 2
min > af —  Bo,P1
1=1

First Order Conditions lead to Ordinary Least Squares (OLS) estimates

oz —72) (Y —y)

8h = 7 — B17 CHECKM

B1 =

The Simple Linear Regression Model 17
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Estimation — Ordinary Least Squares

The name “Ordinary Least Squares” comes from the fact that these estimates
minimize the sum of squared residuals.

Once we have determined the OLS intercept and slope estimates, we form the
OLS regression line:

y = Bo + Prx

Intercept - B, :is the predicted value of y when x = 0

Slope — - f3; :it tells us the amount by which § changes when x

increases by 1 unit.

B = i—z or alternatively Ay = By Ax

Given any change in X we can compute the predicted change in y

The Simple Linear Regression Model
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Estimation — Ordinary Least Squares

We next examine several examples of simple regression obtained by using real
data.

Since these examples involve many observations, the calculations were done

using an econometrics software package.

At this point, you should be careful not to read too much into these

regressions; they are not necessarily uncovering a causal relationship.

We could interpret much better the estimates once we establish the statistical

properties of them.

The Simple Linear Regression Model 19



/

—_—

‘Estimation — Ordinary Least Squares

EXAMPLE 1: CEO SALARY AND RETURN ON EQUITY

salary = Bg + B1roe + u

Salary in thousands of dollars Average Return on equity for the

CEOQOSs firm for the previous 3 years (%)
OLS regression — 209 observations (CEOs) in 2013

salary = 963.191 + 18.501 roe

s

Intercept o
P If the return on equity increases by 1 percent,

C 1 e then salary is predicted to change by 18,501 $
ausal interpretation:

The Simple Linear Regression Model 20
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salary

963.191

- Estimation — Ordinary Least Squares

OLS regression line

salary = 963.191 + 18.501 roe
(depends on sample)

\

—
—
—
L—
—
—
L
e
—
—
—
-
—
—
—
—
—
—
—
—
—

,,,,, E(salarylroe) = B, + B,roe

Unknown population regression line

roe

The Simple Linear Regression Model 21
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‘Estimation — Ordinary Least Squares

EXAMPLE 2: WAGE AND EDUCATION

wage = Bg + f1educ + u

/ \

Hourly wage in dollars Years of schooling

OLS regression - 526 individuals in 1976

wage = —0.90 4 0.54 educ

=

Intercept :
In the sample, one more year of education was

associated with an increase in hourly wage by 54 cents

The Simple Linear Regression Model 22
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Estimation — Ordinary Least Squares

EXAMPLE 3: Voting outcomes and campaign expenditures (two parties)

voteA = By + B1shareA + u

/ \

Percentage of votes for candidate A Percentage of campaign expenditures candidate A

OLS regression — 173 two-party races for a country social election in 2013

voteA = 26.81 + 0.464 shareA

=

Intercept . A
b If candidate A‘s share of spending increases by one
percentage point, he or she receives 0.464 percen-
tage points more of the total vote

The Simple Linear Regression Model 23
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Estimation — Ordinary Least Squares

Properties of OLS on any sample of data

1. | Fitted values and residuals: we assume that the intercept and slope estimates have

been obtained for a given sample of data. Given 5y and 1 we can obtain the fitted

value for each observation:

y; = Bo + B1z;

The OLS residual associated to each observation is the difference between the

actual value and the fitted value of the dependent variable:

—~

Ui — Yi — Yi
If 4; is positive, the line underpredicts y;; if negative, the line overpredictsy;.

The Simple Linear Regression Model 24



obsno roe salary salaryhat uhat
1 14.1 1095 1224.058 —129.0581
2 10.9 1001 1164.854 —163.8542
3 23.5 1122 1397.969 —275.9692
4 5.9 578 1072.348 —494.3484
5 13.8 1368 1218.508 149.4923
6 20.0 1145 1333.215 —188.2151
7 16.4 1078 1266.611 —188.6108
8 16.3 1094 1264.761 —170.7606
9 10.5 1237 1157.454 79.54626
10 26.3 833 1449.773 —616.7726
11 25.9 567 1442.372 —875.3721
12 26.8 933 1459.023 —526.0231
13 14.8 1558 1237.009 101.9911
14 22.3 937 1375.768 —438.7678
15 56.3 2011 2004.808 6.191895

The Simple Linear Regression Model

- Estimation — Ordinary Least Squares

EXAMPLE 2 (Continued) — the 15 first observations

TABLE 2.2 Fitted Values and Residuals for the First 15 CEOs

25
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Estimation — Ordinary Least Squares

Properties of OLS on any sample of data

2. /Algebraic properties of OLS regression — 3 important properties!

(1) The sum, and therefore the sample average of the OLS residuals, is zero.
T
1=1

(2) The sample covariance between the regressors and the OLS residuals is zero

The Simple Linear Regression Model 26
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Estimation — Ordinary Least Squares

Properties of OLS on any sample of data

2. /Algebraic properties of OLS regression — 3 important properties!

(3) The point (X, y) is always on the OLS regression line

y = Bo + B17

Remarks: these properties need no proof. Property (1) and (2) follow from the OLS

first order conditions. Property (3) comes from the OLS estimation of the intercept

Bo=%— Bix

The Simple Linear Regression Model 27
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Estimation — Ordinary Least Squares

GOODNESS-OF-FIT
How well does the explanatory variable explain the dependent variable?

Measures of Variation

T n T
SST =Y (y;i—9)? SSE= (5-9? SSrR=Y @’

Total sum of squares, Explained sum of squares, Residual sum of squares,
represents total variation represents variation represents variation not
in dependent variable explained by regression explained by regression

The Simple Linear Regression Model
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Estimation — Ordinary Least Squares

Decomposition of total variation

SST =5SE+ SSR

- -

Total variation Explained part Unexplained part
Goodness-of-fit measure (R-squared)

2 _ SSE _ _SSR
o SST o SS5T \ R-squared measures the fraction of the

total variation that is explained by the
regression

The Simple Linear Regression Model 29
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Estimation — Ordinary Least Squares

CEO Salary and return on equity

salary = 963.191 4 18.501 roe

The regression explains only 1.3 %

n — 209, R2 — 0.0132 of the total variation in salaries

Voting outcomes and campaign expenditures

voteA = 26.81 + 0.464 shareA

5 The regression explains 85.6 % of the
n=173, R = 0.856 total variation in election outcomes

Caution: A high R-squared does not necessarily mean that the regression has a
causal interpretation!

The Simple Linear Regression Model 30
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Estimation — Ordinary Least Squares

Example: The following table contains the ACT scores and the GPA for eight college

students. Grade point average is based on a four-point scale and has been rounded to
one digit after decimal.

Student GPA ACT

1 2.8 21
2 3.4 24
3 3.0 26
4 3.5 27
5 3.6 29
6 3.0 25
7 2.7 25
8 3.7 30

The Simple Linear Regression Model 31
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‘Estimation — Ordinary Least Squares

Example:

Estimate the relationship between GPA and ACT using OLS; that is, obtain the
intercept and the slope estimates in the equation.

GPA = 0.5681 + 0.1022ACT

Comment on the direction of the relationship. Does the intercept have a useful
interpretation here? Explain.

How much higher is the GPA predicted to be if the ACT score is increased by five
points? . If ACT is 5 points higher, GPA increases by 0.1022(5) = 0.511.

The Simple Linear Regression Model
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Estimation — Ordinary Least Squares

Example:

Compute the fitted values and residuals for each observation, and verify that the
residuals (approximately) sum up to zero.

/ GPA GPA f

1 2.8 27143  0.0857
2 34 3.0209  0.3791
3 30 32253 —0.2253
4 35 33275  0.1725
5 3.6 35319  0.0681
6 3.0 31231  —0.1231
7 2.7 31231  —0.4231
8 3.7  3.6341  0.0659

The Simple Linear Regression Model
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‘Estimation — Ordinary Least Squares

Example:

How much of the variation in GPA for these eight students is explained by ACT?
Explain.

R? = 1 —SSR/SST 1 —(0.4347/1.0288) = 0.577.

Therefore, about 57.7% of the variation in GPA 1s explained by ACT in this small

sample of students.

The Simple Linear Regression Model 34
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Properties of the Regression Coetficients

Recall the properties of any estimator 8 we learnt in Unit |

Now the question is...

...What the estimators will estimate on average and how large their
variability in repeated samples 1s going to be???

E(Bo) =7, E(B1) =7

Var(Bo) = 7, Var(f1) =7

The Simple Linear Regression Model 35
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Properties of the Regression Coefficients

Theorem 1.1: Unbiasedness of OLS

SLR1-SLRA4A = E(Bo) = Bo, E(B1) = b1

Interpretation of unbiasedness

The estimated coefficients may be smaller or larger, depending on the sample

that is the result of a random draw.

However, on average, they will be equal to the values that characterize the true

relationship between y and x in the population.

"On average" means if sampling was repeated, i.e. if drawing the random sample

and doing the estimation was repeated many times.

In a given sample, estimates may differ considerably from true values.

The Simple Linear Regression Model 36



Properties of the Regression Coetficients

Variances of the OLS estimators

Depending on the sample, the estimates will be nearer or farther away from the

true population values.

How far can we expect our estimates to be away from the true population values

on average (= sampling variability)?

Sampling variability is measured by the estimator’s variances

Var(Bp), Var(B1)

Assumption SLR.5 (Homoskedasticity)

2 The value of the explanatory variable must
contain no information about the variability of
the unobserved factors

Var(u;lz;)) = o

The Simple Linear Regression Model 37



Properties of the Regression Coetficients

Graphical illustration of homoskedasticity
f(y1x)

The variability of the unobserved factors
does not depend on the value of the
explanatory variable

The Simple Linear Regression Model 38



Properties of the Regression Coetficients

An example for heteroskedasticity: Wage and education

fiwageleduc)

The variance of the unobserved
determinants of wages increases
with the level of education

wage

E(wageleduc) =
B, + B,educ

educ

The Simple Linear Regression Model
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Properties of the Regression Coefficients

Theorem 2.2: Variances of OLS estimators:

Under assumptions SLR.1 — SLR. 5:

o2 o2

Var(B1) =

2,,—1 2 2,,—1 2
Var(Bo) = on Z?:l_wz‘ _o°n Do T
o (x; — z)2 SSTy

Conclusion:

The sampling variability of the estimated regression coefficients will be higher the
larger the variability of the unobserved factors, and lower, the higher the variation

in the explanatory variable.

The Simple Linear Regression Model 40
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Properties of the Regression Coetficients

Estimating the error variance

Var (uz |CU’L) — 0-2 — VCLT'(U?;) The vatiance of u does not depend on x, i.e. is

equal to the unconditional variance

One could estimate the variance of the

1 n _ 1 n . .
~2 ~ = \2 __ ~2 errors by calculating the variance of the
g = Z (u’?/ o u?/) - Z U; residuals in the sample; unfortunately this
n 1=1 =1 estimate would be biased
5 1 n 5 An unbiased estimate of the error variance can be obtained by
o = — Z us subtracting the number of estimated regression coefficients
n— 2 i—1 ¢ from the number of observations

The Simple Linear Regression Model
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Properties of the Regression Coefficients

Theorem 2.3 (Unbiasedness of the error variance)

SLR1—SLR5 = E(5°) =07

Calculation of standard errors for regression coefficients

se(B1) = \/Var(By) = \/32/SST:

n
52n 1 > CU%/SST;];
1=1

se(Bo) = y/Var(fo)

Remark: The estimated standard deviations of the regression coefficients are called

standard errors. They measure how precisely the regression coefficients are estimated.

The Simple Linear Regression Model



Transformation of Variables

Linear Relationships: So far we have been focused on linear relationships

between the dependent and independent variables.

Fortunately, it 1s rather easy to incorporate many nonlinearities into
simple regression analyisis by appropiately defining the dependent and

independet variables.

We will cover two possibilities that often appear in applied work

Semi-Logarithmic form: the dependent variable is transformed into logs

Log-Logarithmic form: both the dependent and explanatory variables are

transformed into logs.

The Simple Linear Regression Model 43
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Transformation of Variables

Incorporating nonlinearities: 1. Semi-logarithmic form

The dependent variable appears in logarithmic form. Why is this done?
Recall the wage-education example.

We obtained a slope estimate of 0.54, which means that each additional year of

education is predicted to increase houtly wage by 54 cents.

Because of the linear nature of the that relationship, 54 cents is the increase for
either the first year of education or the twentieth year. This may not be

reasonable!

Probably a better characterization of how wage changes with education is that
each year of education increases wage by a constant percentage. The semi-log

model gives us that constant percentage etfect.

The Simple Linear Regression Model
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Transformation of Variables

Incorporating nonlinearities: 1. Semi-logarithmic form

Regression of log wages on years of education

log(wage) = Bg + Breduc + u

Natural logarithm of wage

This changes the interpretation of the regression coefficient:

Owage ) €— Percent hange of
__Olog(wage) 1  Owage _ ercentage change of wage
Oeduc wage Oeduc @ &———r _if years of education

are increased by one year

B1

The Simple Linear Regression Model 45
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Transformation of Variables

Incorporating nonlinearities: 1. Semi-logarithmic form

Fitted regression

log(wage) = 0.584 + 0.083 educ

5

The wage increases by 8.3 % for
every additional year of education
(= return to education)

Remark: rememeber that the main reason for using the log of wage is to impose a
constant percentage effect of education on wage. Once the above equation 1s
obtained, the natural log of wage is rarely mentioned.

The Simple Linear Regression Model 46



/‘ ° °
Transformation of Variables

Incorporating nonlinearities: 1. Semi-logarithmic form

wage

Growth rate of wage is 8.3 %
per year of education

0 educ

The Simple Linear Regression Model
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Transformation of Variables

Incorporating nonlinearities: 2. Log-logarithmic form

CEO salary and firm sales

log(salary) = By + B1109(sales) + u

Natural logarithm of CEO salary Natural logarithm of his/her firm‘s sales

This changes the interpretation of the regression coefficient:

— Percentage change of salary

/ ... 1f sales increase by 1%

Logarithmic changes are

8, = odlog(salary)  \galary
L= dlog(sales)

always percentage changes

The Simple Linear Regression Model 48
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Transformation of Variables

Incorporating nonlinearities: 2. Log-logarithmic form

CEO salary and firm sales: fitted regression

log(salary) = 4.822 4+ 0.257 log(sales)

3

+ 1% sales —> + 0.257 % salary

Remark: The log-log form postulates a constant elasticity model, whereas the semi-log

form assumes a semi-elasticity model

The Simple Linear Regression Model 49



Transformation of Variables

TABLE 2.3 Summary of Functional Forms Involving Logarithms

Dependent Independent Interpretation
Model Variable Variable of B,
Level-level y X Ay = B,Ax
Level-log y log(x) Ay = (B:,/100)%Ax
Log-level log(y) X %Ay = (1008;)Ax
Log-log log(y) log(x) %Ay = B,%Ax

The Simple Linear Regression Model 50



‘Summary

We have introduced the simple linear regression model and cover its basic
properties.

Given a random sample, the method of ordinary least squares 1s used to
estimate the slope and intercept parameters in the population model.

We have demonstrated the algebra of the OLS regression line, including
computation of fitted values and residuals, and the obtaining of predicted
changes in the dependent variable for a given change in the independent
variable.

We discuss the use of the natural log to allow for constant elasticity and
constant semi-elasticity models.

We learnt that the OLS estimators are unbiased.

We get simple formulas for the sampling variances of the OLS estimators
when we add the assumption of homoscedasticity.

The Simple Linear Regression Model
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