Introducción Capas del software de Entrada-Salida Elementos de Entrada-Salida Proyección de Entrada-Salida en memoria Fécnicas de realización de Entrada-Salida Ejemplo de dispositivo: gestión de disco

Gestión de Entrada-salida

E. Campo M. Knoblauch Ó. López J. Clemente

Departamento de Automática Universidad de Alcalá

Introducción Capas del software de Entrada-Salida Elementos de Entrada-Salida troyección de Entrada-Salida en memoria écnicas de realización de Entrada-Salida Ejemplo de dispositivo: gestión de disco

Índice


- Introducción
- 2 Capas del software de Entrada-Salida
- 3 Elementos de Entrada-Salida
- 4 Proyección de Entrada-Salida en memoria
- 5 Técnicas de realización de Entrada-Salida
- 6 Ejemplo de dispositivo: gestión de disco

Problemática de la E/S

- Uso extensivo de E/S
 - Cuanta mayor concurrencia de E/S, mayor aprovechamiento del sistema
- Cada dispositivo de E/S tiene su propia idiosincrasia
 - Funcionalidad diversa
 - Almacenamiento (Discos)
 - Interfaz de usuario (Teclado, ratón)
 - Comunicaciones (Tarjetas de red, módem)
 - Etc.
 - Modo de acceder a ellos
 - Diferentes grados de autonomía e inteligencia
- Los dispositivos necesitan ayuda del núcleo
- Diferentes velocidades

Velocidades de dispositivos E/S

Gestión de la E/S

- El sistema operativo es el vínculo entre la aplicación de usuario y el hardware de E/S
- Objetivos del subsistema de E/S del S.O.:
 - Ocultar el HW a las aplicaciones
 - Interfaz uniforme de acceso (nombres uniformes)
 - Independencia de dispositivo
 - Poder escribir programas capaces de acceder a un dispositivo de E/S sin saber de antemano de q dispositivo se trata
 - Manejo de errores
 - Gestión de distintos tipos de dispositivos
 - Compartibles o dedicados
 - De modo carácter o de modo bloque
 - De acceso secuencial o aleatorio
 - Etc...

Capas del software de E/S (1/2)

Hamadas de E/S. formateo de E/S, spooling

Nombrado, protección. bloqueo, buffering, asignación de disposit.

Asignación de valores a registros de dispositivos, comprobación del estado

Gestión de INT

E/S en espacio de usuario

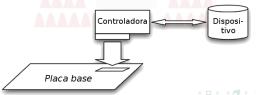
E/S independiente de dispositivo

Manejador Manejador Manejador Manejador Manejador Manejador disco sonido línea serie

aráficos teclado ratón

Manejador de interrupciones

Realización de la op. E/S


Capas del software de E/S (2/2)

- El hardware de E/S puede actualizarse y modificarse:
 - El SO proporciona mecanismos para actualizaciones
 - ¿Qué ocurre si se introduce un nuevo elemento hw?
 - Enfoque monolítico y enfoque micronúcleo
- La interfaz de E/S con el usuario final:
 - Uniforme de acceso
 - Todos los dispositivos tienen la misma apariencia
 - Independiente del dispositivo
 - Oculta el hw a los niveles superiores
 - El usuario no se preocupa de acceder a cada dispositivo
 - Las primitivas de acceso a cada dispositivo son las mismas, independientemente del tipo de dispositivo

Elementos de E/S

- Cada elemento de E/S se conecta al bus del sistema directa o indirectamente
- Suele estar dividido en dos partes:
 - Controladora o adaptador de dispositivo
 - Tarjeta de circuito impreso conectada a una ranura de expansión del computador
 - Posee registros de estado, control y datos
 - El dispositivo en sí
 - Conectado a la controladora mediante una ranura, cable o similar, que puede ser un estándar (p.e. IDE o SCSI)

Manejadores de Interrupciones

- En la mayoría de operaciones de E/S, las interrupciones son inevitables
 - Se deben ocultar lo máximo posible
 - El S.O. puede/debe realizar varias tareas:
 - Guardar registros y PSW y preparar un contexto y una pila para poder ejecutar una ISR
 - Enviar el acuse de recibo a la controladora de interrupciones
 - Ejecutar la ISR. Esta parte interactuará con la controladora que generó la interrupción.
 - En ocasiones, despertar a algún proceso implicado en la E/S e invocar al planificador.
 - Preparar el contexto y recuperar los registros del nuevo proceso
 - Retornar de la interrupción y ejecutar el nuevo proceso.

Manejadores de Dispositivos

- Contienen el código específico de cada dispositivo
- Funciones:
 - Inicializar el dispositivo
 - Aceptar solicitudes abstractas de leer o escribir por el SW independiente de dispositivo
 - Registrar los sucesos
- Suele estar escrito por el fabricante de cada dispositivo hardware
 - Es importante que los diseñadores del S.O. tengan un modelo bien definido de lo que hace un manejador de dispositivo y cómo interactúa con el S.O.
 - Interfaz estándar de dispositivos de modo bloque y de modo carácter

Proyección de E/S en memoria

- Comunicación entre controladora y CPU
 - Registros de control: La CPU puede leerlos o escribirlos para dar órdenes al dispositivo, averiguar su estado, etc.
 - Buffers de datos que el S.O. puede leer y escribir
- ¿Cómo?
 - Asignar a cada registro un puerto de E/S
 - Puerto: entero de 8 o 16 bits
 - Instrucciones específicas para leer y escribir (IN, OUT)
 - Establecer una correspondencia entre registros y posiciones de memoria
 - Los accesos a dichas posiciones realmente acceden a los registros
 - Instrucciones de carga y almacenamiento estándar (p.e. MOV)
 - Híbrido
 - Puertos para los registros, memoria para los buffers

Técnicas de realización de E/S (1/2)

- Las operaciones de los periféricos son asíncronas con respecto a las del procesador
- Diferentes mecanismos de comunicación:
 - Sondeo
 - Interrupciones
 - Acceso directo a memoria

Técnicas de realización de E/S (2/2)

- E/S Programada (Polling)
 - La CPU espera a que el dispositivo esté listo para enviar el siguiente carácter (sondeo)
 - Sencillo pero con espera activa
- E/S mediante interrupción
 - El proceso lo inicia la CPU y continúa mediante interrupción
 - El proceso que realiza la llamada de E/S se bloquea, por lo que evita espera activa
 - Se produce una interrupción con cada carácter
- E/S mediante DMA
 - El controlador DMA es el que alimenta los caracteres
 - El controlador DMA hace básicamente E/S programada
 - El proceso que realiza la llamada de E/S se bloquea
 - Se produce una única interrupción y se evita la espera activa

Hardware de un disco

- Disco organizado en sectores de 512 bytes referenciados:
 - Cilindro, cabeza, sector: CHS
- Tiempos de acceso
 - T. posicionamiento
 - T. latencia
 - T. transferencia
- ¿Cuál es posible optimizar?
- En los discos modernos, la estructura interna del disco es transparente, los sectores se referencian mediante un índice (LBA)

Manejador de disco

- Obejtivo: Leer y escribir sectores del disco
- Procedimientos básicos:
 - Inicializar el DMA
 - Arrancar el motor (en disquetes o discos con ahorro de energía)
 - Posicionar las cabezas en el lugar adecuado
 - Leer o escribir los datos (la finalización es notificada por el controlador con una interrupción)
 - Detener el motor (en disquetes)
- Las operaciones a realizar dependerán del grado de inteligencia e independencia de la controladora de disco

Planificación de la E/S en disco (1/2)

- Existen diferentes posibilidades de planificación
- Para evaluar los diferentes algoritmos, se utiliza una lista de solicitudes:
 - 98, 183, 37, 122, 14, 124, 65 y 67 (con cabeza en pista 53)
- FCFS
 - Método más sencillo de planificar e implementar
 - Aceptable con carga ligera (equitativo)
 - 640 pistas recorridas

Planificación de la E/S en disco (2/2)

SSTF

- Minimiza el tiempo de búsqueda
- El tiempo de respuesta no es equitativo, se discriminan las pistas externas y puede aparecer inanición
- 236 pistas recorridas

SCAN

- Denominado algoritmo del ascensor
- Existe una variante, C-SCAN, que proporciona tiempos de espera más uniformes
- 236 pistas recorridas
- Actualmente, es la controladora HW de disco la que optimiza las solicitudes de disco

Referencias bibliográficas

- [Sánchez, 2005] S. Sánchez Prieto.
 Sistemas Operativos.
 Servicio de Publicaciones de la UA, 2005.
- [Tanenbaum, 2009] A. Tanenbaum. Sistemas Operativos Modernos. Ed. Pearson Education, 2009.
- [Stallings, 1999] W. Stallings.
 Organización y arquitectura de Computadores.
 Ed. Prentice Hall, 1999.
- [Silberschatz, 2006] A. Silberschatz, P. B. Galván y G. Gagne Fundamentos de Sistemas Operativos.

McGraw Hill, 2006