Curso: 2017-2018

- 1. A una temperatura concreta, se dispone de una mezcla de dos componentes (A y B) en equilibrio entre la fase liquida y la fase vapor. Se conoce que cuando el valor de la fracción molar de A en el líquido es de 0,3, la presión parcial del componente A en la fase vapor en equilibrio con una mezcla liquida A+B es de 5 kPa. Calcule la fracción molar de A en la fase liquida de otra mezcla de los mismos componentes y a la misma temperatura pero con una presión parcial del componente A en la fase vapor de 10 kPa.
- **2.** Una mezcla de dos fases de benceno y tolueno está en equilibrio a 70°C. Si la composición de la fase vapor es equimolar, determine la composición de la fase liquida de esta mezcla.

Datos:

P saturación benceno a 70 °C: 551 mm Hg P saturación tolueno a 70 °C: 204 mm Hg

- **3.** Para el sistema pineno (1)-limoneno (2) a 400 mm Hg:
- a) Calcular y representar las curvas de equilibrio líquido-vapor T-X-Y e Y-X
- **b**) Determinar gráficamente la temperatura de burbuja de una mezcla líquida con una composición equimolar en ambos componentes a 400 mmHg de presión total.
- c) Determinar gráficamente la temperatura de rocío de una mezcla vapor con una composición equimolar en ambos componentes a 400 mmHg de presión total.

Datos y notas

Se pueden suponer mezcla líquida y vapor ideal

Los datos de presión de vapor de pineno y limoneno son:

Temperatura, °C	Pineno (mmHg)	Limoneno (mmHg)	
	(mmHg) 24.8 61.9 155.7 160.9 192.0 391.5 416.0 428.5 506.0 528.0 604.0 623.0 760.0		
168.8 170.3 172.8		670.5 695.5 760.0	

4. La ecuación de Antoine correlaciona la presión de vapor de los líquidos puros con la temperatura según:

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

temperatura de outouja y de rocío para una mezcla con un 25 % del componente más pesado.

Curso: 2017-2018

- **5.** Calcule para una mezcla líquida equimolar ciclohexano (1)-tolueno(2):
- a) Presión de burbuja y composición del vapor a 298.15 K.
- b) Temperatura de ebullición (de burbuja) y composición del vapor a 101.33 kPa.

Calcule para una mezcla gaseosa equimolar:

- c) Presión mínima a la que se produce condensación (presión de rocio) y composición de la primera gota condensada a 75°C.
- d) Temperatura a la que comienza la condensación (temperatura de rocio) y composición de la primera gota si la mezcla se enfría a 101.33 kPa.

Aproximaciones: Idealidad para la fase vapor (Dalton), y la líquida (Raoult).

Datos: Presión de vapor de los componentes puros según la ecuación de Antoine:

		A	В	С
$\log P^{S}(kPa) = A - \frac{B}{T(K) - C}$	ciclohexano	5.96990	1203.526	50.137
	tolueno	6.07826	1333.943	53.663

6. Una mezcla de 30 moles de A, 30 moles de B y 40 moles de C, se encuentra en un cilindro provisto de un émbolo que se mantiene a una temperatura de 50 °C. Inicialmente la presión es tal que la mezcla entera es un vapor. La presión se incrementa lentamente desplazando el émbolo de modo que se disminuya el volumen. Puede considerarse que todos los componentes de la mezcla obedecen las Leyes de Raoult y de Dalton y que tienen las siguientes presiones de vapor a 50 °C:

A 410 mmHg

B 140 mmHg

C 50 mm Hg

Suponiendo el vapor y el líquido bien mezclados y en equilibrio en todo momento:

- a) Calcular la composición de la primera gota que condensa.
- b) Calcular la composición del líquido cuando ha condensado el 50 % del hexano.
- c) Calcular la presión total cuando el último resto de vapor condense.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70