TEMA 11. Introducción a la Cinética Química: principios básicos

Grabado de Heinrich Khunrath, "Amphitheatrum Sapientiae Aeternae..." Hannover, 1609

TEMA 11. Introducción a la Cinética Química Objeto de estudio

TEMA 11. Introducción a la Cinética Química Velocidad de Reacción

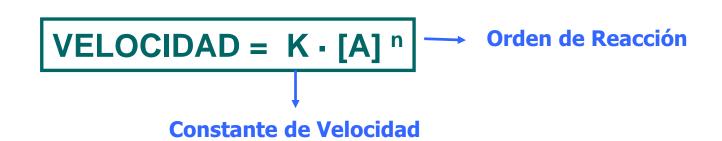
"Una ecuación estequiométrica no representa necesariamente el mecanismo del proceso molecular entre los reactivos"

MOLECULARIDAD "Número de moléculas de reactivo que intervienen en una reacción simple o elemental"

- 1. Reacciones Monomoleculares --- Isomerizaciones ó Descomposiciones
- 2. Reacciones Bimoleculares Reacciones de Asociación y Canje
- 3. Reacciones Trimoleculares y Superiores → Reacciones de Canje

Dónde las dos primeras son las más habituales

TEMA 11. Introducción a la Cinética Química Ecuación de Velocidad


 $A (REACTIVO) \longrightarrow B (PRODUCTO)$

CÁLCULO DE LA VELOCIDAD

Velocidad de reacción =
$$-\frac{d[A]}{dt} = \frac{d[B]}{dt}$$

"Es la cantidad de reactivo que se consume o producto que se forma por unidad de volumen en la unidad de tiempo"

ECUACIÓN DE VELOCIDAD

TEMA 11. Introducción a la Cinética Química Ecuación de Velocidad

$$aA + bB \longrightarrow PRODUCTOS$$

Velocidad (v) = $k \cdot [A]^x \cdot [B]^y$

EXPRESA LA RELACIÓN ENTRE LA VELOCIDAD DE UNA REACCIÓN Y LA CONCENTRACIÓN DE LOS REACTIVOS ELEVADOS A UNAS POTENCIAS

iiiIMPORTANTE!!!

x e y SE DETERMINAN EXPERIMENTALMENTE Y NO TIENEN POR QUÉ COINCIDIR CON a y b

TEMA 11. Introducción a la Cinética Química Ecuación de Velocidad

$$VELOCIDAD = K \cdot [A]^n$$

ORDEN DE REACCIÓN

Siempre en función de las concentraciones de REACTIVOS

SI LA VELOCIDAD ES **DIRECTAMENTE PROPORCIONAL A [A]**ⁿ SE DICE QUE LA REACCIÓN **ES DE n ORDEN**

EN GENERAL:

Velocidad = K [A]ⁿ¹ [B]ⁿ² [C]ⁿ³...
$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$
ORDENES PARCIALES

ORDEN TOTAL(n) \longrightarrow n= n1 + n2 + n3 +...

CONSTANTE DE VELOCIDAD

Siempre a TEMPERATURA = constante

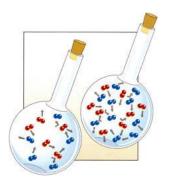
SUS UNIDADES **DEPENDEN DEL ORDEN** DE REACCIÓN

EN GENERAL:

Unidades de K= [M] ¹⁻ⁿ [tiempo] ⁻¹

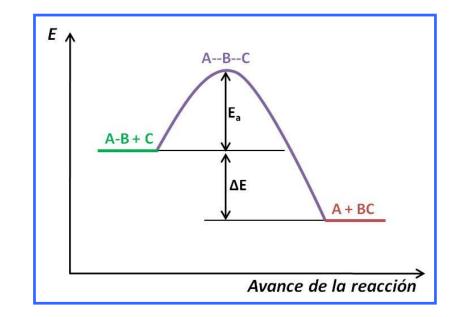
CONOCIDAS UNIDADES K

CONOCIDO ORDEN DE REACCIÓN (n)


TEMA 11. Introducción a la Cinética Química Factores que afectan a la Velocidad

a. CONCENTRACIÓN DE LOS REACTIVOS

PARA SUPERAR LA E a: choques entre las moléculas de reactivo

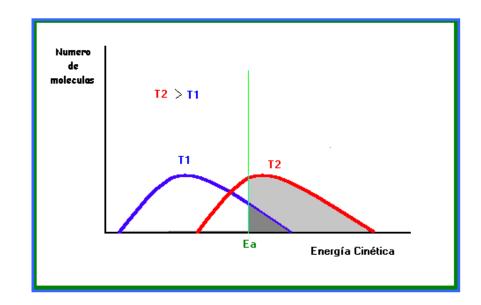


Más concentración - Más colisiones

MAYOR VELOCIDAD

TEMA 11. Introducción a la Cinética Química

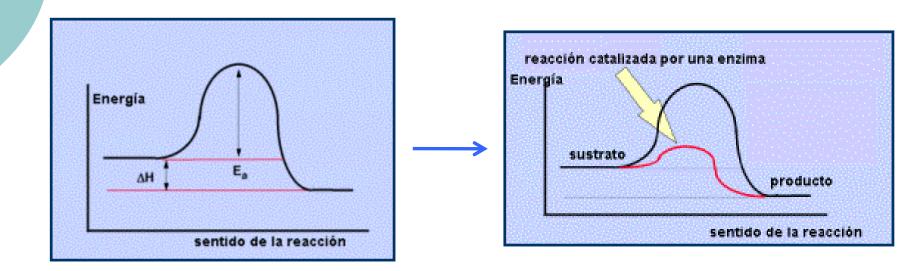
Factores que afectan a la Velocidad



b. TEMPERATURA (ARRHENIUS)

$$k = Ae^{-E_a/RT}$$

Mayor temperatura - Mayor K



TEMPERATURA Y E_a DE LA REACCIÓN

TEMA 11. Introducción a la Cinética Química Factores que afectan a la Velocidad

c. EFECTO DE LOS CATALIZADORES

"Al disminuir la E_a, los choques entre reactivos superan la barrera energética con mayor facilidad y por tanto, la velocidad de reacción aumenta"

TEMA 11. Introducción a la Cinética Química: principios básicos

Grabado de Heinrich Khunrath, "Amphitheatrum Sapientiae Aeternae..." Hannover, 1609