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Introduction:Why linear equations are important?

They appear everytime in solving many engineering problems:
The resolution of an electric network using Kirchoff laws leads to
a system of equations of the intensities.
The resolution of a hydraulic network, where the presures of
each node are the unknowns
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Introduction:Why linear equations are important?

The numerical solution of any Partial Differential Equation,
generally leads to a system of linear equations: i.e. heat
equation in 1D solved by finite differences

Ut = Uxx

U(0, t) = U(1, t) = 0
U(x ,0) = U0(x)

The domain in space is discretized using a mesh x0, ..., xJ and in
time using a mesh t0, ...., tN . The solution at each point/time is
u(xj , tn) = un

j .
The unknowns here are the nodal temperatures at n + 1 and the
linear equation that result is

(1 + 2r)un+1
j − run+1

j−1 − run+1
j+1 = un

j

, r depending on a relation between spatial and time increment
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Introduction
A linear system of equations is a set of m equations, each of them
consisting on a linear combination of n unknowns, xi , i = 1...n and an
indpendent term bi , i = 1...m

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

1 If the system has a solution and this solution is unique. This in
known as a compatible determined system

2 If the system has solution, but there exist infinite solutions, the
system is called compatible indetermined system

3 If the system does not have a solution, the system is
incompatible
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Introduction
The linear system can be rewritten using matrices,

Ax = b

where

Amn =


a11 a12 · · · a1n
a21 a22 · · · a2n

...
am1 am2 · · · amn

 ; x =


x1
x2
...

xn

 ; b =


b1
b2
...

bm


In this case, the type of system can be obtained using the
Rouchee-Fröbenius theorem

1 if rank (A) = rank (A|b) = n the system is compatible determined
2 if rank (A) = rank (A|b) < n the system is compatible

undetermined
3 if rank (A) 6= rank (A|b) the system is uncompatible
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Introduction

Examples,

3x + 2y + z = 1
2x + z = 2
x + y = 1

is compatible and determined: has a unique solution
x = 3, y = −2, z = −4

3x + 2y + z = 1
2x + z = 2
x + 2y = −1

is compatible and undetermined, solutions can be parametrized and
correspond to x = 1− λ/2, y = −1 + λ/4, z = λ
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Introduction

3x + 2y + z = 1
2x + z = 2
x + 2y = 1

is incompatible and no values of x , y , z can fulfill the 3 equations
Direct solution of determined linear systems

The classic method (secondary school) to solve the system,
Cramers rule

xi =
det(Ai)

det(A)

being Ai the matrix formed substituting the i-th column of A by b
The Cramers rule computes n+1 determinants, using Laplace
O(n) = 2(n + 1)!, what means that if n = 20, a computer with
10Gflops will take more than 324 years to solve the system!!
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Classification of algorithms

In order to obtain the solution of a linear system, different methods
can be used. They can be classified in two groups

direct methods s if they yield the solution of the system in a finite
number of steps, i.e. Cramer rule, LU decompostion
iterative methods if they require (in principle) an infinite number
of steps. In this case, the solution is approached by truncating
the method and obtaining an approximate but accurate approach

For a dense matrix, no algorithm could provide a solution with less
than ≈ n2 operations, but the use of one or other type of method will
give better performance depending on the structure of the matrix.
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Direct methods: LU decomposition

Assuming a compatible and determined system of the type

Ax = b (1)

Being A non-singular, and if its leading principal minors are non-zero,
then it can be proved that the matrix admit a decomposition such that

A = LU

with L a lower diagonal matrix and U an upper diagonal matrix:

L =


l11 0 · · · 0
l21 l22 0 · · · 0
...

...
. . .

...
ln1 ln2 · · · lnn

 ; U =


u11 u12 · · · u1n
0 u22 · · · u2n
...

...
. . .

...
0 0 · · · unn


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Direct methods: LU decomposition
In this case the equation 1 can be solved by two triangular systems

Ly = b (2)
Ux = y (3)

This systems are much easier to solve, the first system (2) can be
solved by a forward substitution

y1 =
b1

l11

y2 =
b2

l22
− l21

l22
y1

...

yi =
1
lii
(bi −

j=i−1∑
j=1

lijyj), for i = 2, ...,n

Author, Another
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Direct methods: LU decomposition

and after that, the second system (3) can also be solved recursively
by a backward substitution provinding the final solution of the initial
problem 1

xn =
ynn

unn

...

xi =
1
uii

(bi −
n∑

j=i+1

uijxj), for i = n − 1, ...,1

The number of operations for solving by forward substitution the
system (2) is n2 and the same number is necessary for the system
(3), giving an order of O(n2) for the substitution step (yet the
decomposition has not been solved and evaluated).
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Gaussian elimination

The equation A = LU does not have a unique solution, for example in a 3x3
matrix only 9 equations are available for 12 unknows. In general there exist
n2 equations and n2 + n unknowns.
If lii = 1, i = 1, ..., n then the solution is unique and can be computed using
Gaussian elimination

[n m]=size(A);
if n==m
l=eye(n);
for k=1:n-1

for i=k+1:n
l(i,k)=A(i,k)/A(k,k);
for j=k+1:n

A(i,j)=A(i,j)-l(i,k)*A(k,j);
endfor

endfor
endfor
for i=1:n

for j=i:n
u(i,j)=A(i,j);

endfor
endfor
disp(l);
disp(u);
else disp(’Non square matrix’)
endif
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Gaussian elimination
The term A(k , k) that appears during the k -th eliminations of the
matrix is called pivot .The total number is n − 1 pivots

OCTAVE/MATLAB exercise
Write as a function the Gaussian elimination algorithm being A
the input and L and U the outputs
Define the matrix
A=[1 2 3 4;2 8 5 -2;3 5 3 0;4 -2 0 1] and obtain L
and U
Obtain the value of A as the product of L and U
Define the matrix A=[ 1 2 3; 2 4 5; 3 5 6] and obtain L
and U. What happens? Why?
Add to the function of LU decomposition the to obtention of the
determinant
Obtain the order of magnitude O(n) of the method to decompose
a general nxn matrix

Author, Another
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Gaussian elimination summary

The LU decomposition works only if A is non-singular
(det(A) 6= 0) , and if its leading principal minors are non-zero
Gaussian elimination provides the decomposition and the
algorithm is of order O(n) = 2n3/3 (non demonstrated here). In
addition, two substitutions, each O(n2), have to be done for
solving the system
The method serves to obtain the determinant with O(n3) just by
multiplying the diagonal elements of U
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LU decomposition with pivoting
The LU decomposition works only if A non-singular (det(A) 6= 0) ,
and if its leading principal minors are non-zero. This condition is
directly fulfilled for

1 A symmetric and positive definite∗ matrix A, this means that
∗for all x 6= 0, x ∈ Rn,xT Ax > 0

2 A diagonally dominated matrix>

|aii | ≥
∑
j 6=i

|aij | for all i

example, the matrix A =

 3 −2 1
1 −3 2
−1 2 4


If A is non-singular but does the condition of the principal minors
Gauss elimination does not work but a special type of factorization
can be applied. This happens if some pivot becomes 0 during
decomposition!
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The pivoting technique

Example A =

0 1 2
1 3 4
2 4 1

 does not admit a LU decomposition, but the

new matrix A =

1 3 4
0 1 2
2 4 1

 consisting of permuting rows 1 and 2

does work.

OCTAVE/MATLAB exercise
Run the Gaussian elimination program with the two matrices of the
example
The original matrix A is invertible, then, which condition is not fulfilling
to admit a LU decomposition?

For the matrix A =

1 1 + .5E − 15 3
2 2 20
3 6 4

, obtain L,U using LU.

Now compute A− LU. What happens?
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The pivoting technique

For a general invertible A matrix, the rows can be permuted in
order to avoid the divisions by zero that the Gaussian elimination
algorithm produces (when pivots are 0 or very small).
Moreover, a general algorithm will search for each row during the
decomposition the row in which pivot is maximum as absolute
value, and interchange both.

for k = 1:n
find r such that |a(r,k)|=max|a(r,k)|, r=k,..,n
exchange row k with row r
for i = k+1:n
l(i,k) = a(i,k)/a(k,k)
for j = k+1:n

a(i,j) = a(i,j)-l(i,k)*a(k,j)
endfor

endfor
endfor

Author, Another
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The pivoting technique

The row permutations of the original A are made as soon as this
becomes necessary, without carrying out any a priori
transformation on A.This technique is given the name of pivoting
by row.
The factorization returns then the original matrix up to a row
permutation

PA = LU

, being P the permutation matrix.
In this case Ax = b→ P−1LUx = b→ LUx = Pb, and the
systems to be solved are

Ly = Pb

Ux = y

Author, Another
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The pivoting technique

MATLAB and OCTAVE provides a built in algorithm for general
LU-decomposition, it can be called by

[L U]=lu(A)
[L U P]=lu(A)

OCTAVE/MATLAB exercise

For the matrix of the last example, A =

0 1 2
1 3 4
2 4 1

, obtain L,U,P

Obtain A back from L,U,P
Write [L U]=lu(A), What is now the value of L?

Author, Another
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The pivoting technique

OCTAVE/MATLAB exercise
Write a MATLAB function that solves a linear system using
LU-decomposition. Built-in function lu() can be used, so only the
substitution must be programmed.

Inputs: A,b
Output: x, cpu time consumed

Check the behavior of the program generating matrices of different
indexes using A=rand(n,n), B=tril(a,0), C=triu(a,0)
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Accuracy of LU-methods

Although a matrix satisfies the conditions for a LU
decomposition, big errors might appear if pivot elements are near
to zero. This errors are alleviated with the pivoting technique, but
results might be yet rather unsatisfactory.
Let be the system Ax = b and let x̂ be the exact solution. Then,
if the system is numerically solved, the relative error in the
solution x can be defined as

‖x− x̂‖
‖x‖

If the independent term is slightly modified (a rounding error
when constructing δb) then the new system becomes
(Ax = b + δb). It can be demonstrated that the relative error
(difference between exact solution using δb or b + δb) is
bounded by

‖x− x̂‖
‖x‖

≤ K (A)
‖δb‖
‖b‖
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Accuracy of LU-methods

The value K (A) is called spectral condition number of the matrix
A and in the particular case of symmetric positive definite
K (A) = |λ|max

|λ|min
being |λ|max and |λ|min the maximum and minimum

modulus of the eigenvalues of A.
K (A) ≥ 1, and the bigger its value, the faster the error
amplification.
When K (A) is large, the matrix is ill − conditioned : the error in
the solution might be large even with small errors in the system
coefficients.
The MATLAB/OCTAVE expression to obtain the spectral
condition number of the matrix A, is cond(A).
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Accuracy of LU-methods

Let be the systems (a) and (b)

(a)
{

x + y = 2
x + 1.001y = 2 (b)

{
x + y = 2

x + 1.001y = 2.001

The solution of (a) is x = 2, y = 0, while the solution of (b) is
x = 1, y = 1, so the coefficient matrix A is ill-condition ed

OCTAVE/MATLAB exercise
Obtain L and U using gauss substitution and solve the system
Obtain the condition number of the matrix of coefficients
Obtain the eigenvalues of the matrix by using eig(A), which is the
relation between condition number and the eigenvalues?

Author, Another



Introduction to programming
Linear systems of equations

Non linear equations and systems
Ordinary differential equations (ODEs)

Introduction
Direct methods
Iterative methods and sparse matrices

The MATLAB/OCTAVE command for solving linear
systems

In order to solve directly a linear system Ax = b in the better way in
MATLAB/OCTAVE a new command can be used:

x=A\b

It will call different algorithms to solve the system depending on the
type of matrix:

If A is upper or lowe triangular, it will just use the substitution
algorithm
In case A is symmetric and with real positive diagonal elements
will use Cholesky decomposition (a less general but faster
method than LU)
Otherwise, pivoting LU decomposition will be used

OCTAVE/MATLAB exercise
Solve again the different examples of previous exercises for random
value of b
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Iterative methods

An iterative method for the solution of the linear system Ax = b
consists in setting up a sequence of {x(k), k ≥ 0} that converges
to the exact solution

lim
k→∞

x(k) = x = A−1b

, for any initial vector x(0).
A possible solution is the succession

x(k+1) = Bx(k) + g

, where B is a suitable matrix and g is a vector depending on b
and A (operating g = (I− B)A−1b )
A valid B should ensure convergency for any x(0), and that is
fulfilled in the case of symmetric, definite positive B with
maximum absolute value of eigenvalues (spectral ratio)ρ(B) ≤ 1 .

Author, Another



Introduction to programming
Linear systems of equations

Non linear equations and systems
Ordinary differential equations (ODEs)

Introduction
Direct methods
Iterative methods and sparse matrices

Iterative methods: Jacobi

If the diagonal entries of A are nonzero, let D be the diagonal matrix
D = diag(a11,a22, · · · ,ann), the Jacobi iterative method consist on this
series

x(k+1) = D−1(D− A)x(k) + D−1b

where D−1 is just the inverse of the diagonal terms.
If the matrix A is strictly diagonally dominant by row, then the Jacobi
method converges.

OCTAVE/MATLAB exercise
Write a MATLAB function that provides the Jacobi iterative solution for

a given n term. Apply the method to A =


1 2 3 4
2 8 5 −2
3 5 3 0
4 −2 0 1

 and

b = 0
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Iterative methods: Other methods and when to stop

The error of a given iterative solution x(k) can be measured by
the residual , r = ‖b− Ax(k)‖.
Once fixed the desired precision, a given method needs a certain
number of iterations to reach that error (converge).
The convergence rate depends on the method and on the matrix!
Several methods can be found on the literature: Gauss-Seidel,
Richardson, Gradient and Conjugate Gradient
In general, iterative methods are faster than direct methods to
obtain a solution when the matrix A is dense.
For sparse banded linear system with small band-with, direct
methods are faster
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Sparse matrices

In Engineering and Physic, large systems of linear equations
(thousands of unknowns) usually appear as a result of the
discretization of a partial derivative equation as the heat
conduction, elasticity equations, etc.
Fortunately, the coefficient matrices of the systems are full of
zero terms, what is known as sparse matrices
The memory needed to save a sparse system in a clever way
may be of O(n) instead of the O(n2) needed when all the matrix
terms are saved.
In addition, direct methods as LU can be adapted for sparse
matrices resulting in computational costs much smaller than
O(n2)
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Sparse matrices

A sparse matrix can be defined in several ways. MATLAB uses a
system consisting on saving 3 vectors instead a full nxn matrix. The
nz non-zero terms are saved in a vector of dimension m, and the
positions of that terms are saved in the original matrix by other 2
vectors.

In order to store a full Anxn matrix as a sparse matrix, the function
AA=sparse(A)

In order to define directly the sparse matrix, declare it first with
the maximum numbers of nz non-zero terms
AA=spalloc(n,n,nz), and then add each non-zero term
using A(i , j) = aij

Any matrix function of MATLAB (i.e. inv(A),det(A),... can
be made with a sparse stored matrix, and the algorithms used in
that case will be addapted for sparse matrices
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Sparse matrices

OCTAVE/MATLAB exercise
Create a matrix 100x100 with diagonal terms equal to 1. and with
1000 terms of random position i , j and value
Inverse the matrix using inv(A), and check the time
Create a sparse matrix from the original one, invert it and check the
time
Compare the time for both cases
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