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Objective

Estimate the egomotion using on-board cameras
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working principle

Estimates incrementally the pose of the vehicle
by examination of the on-board image changes
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Sources

e

“Visual Odometry: Part | - The First 30 Years and Fundamentals”

Scaramuzza, D., Fraundorfer, F.

IEEE Robotics and Automation Magazine, Volume 18, issue 4, 2011.
“Visual Odometry: Part Il - Matching, Robustness, and Applications”

Fraundorfer, F., Scaramuzza, D.

IEEE Robotics and Automation Magazine, Volume 19, issue 2, 2012.
“3_D Vision and Recognition”

Kostas Daniilidis and Jan-Olof Eklundh

Handbook of Robotoics, Siciliano, Khatib (Eds.), Springer 2008
“Simultaneous Localization and Mapping”

Sebastian Thrun, John J. Leonard

Handbook of Robotoics, Siciliano, Khatib (Eds.), Springer 2008
“On-board visual control algorithms for Unmanned Aerial Vehicles”
Ivan F. Mondragén

European PhD thesis at U.P.M. Nov. 2011.
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Brief history of VO

> 1996: The term VO was coined by Srinivasan to define motion orientation

> 1980: First known stereo VO real-time implementation on a robot by
Moraveck, PhD thesis (NASA/JPL) for Mars rovers

1980 to 2000: The VO research was dominated by NASA/JPL in preparation
of 2004 Mars mission (papers by Matthies, Olson, ...)

> 2004: VO used on a robot on another planet: Mars rovers Spirit and
Opportunity

» 2004. VO was revived in the academic environment by Nister «Visual
Odometry» paper. The term VO became popular.

v

When V.O. for positioning?

Alternatives:

+ Odomeftry:
- Actuators (wheels) odometry
+ displacement measurement

- Inertial Measurement Units (IMUs)
+ Aceleration measurement
* Global positioning:
- 6Ps -Gyroscope - Magnetometer
- 3D vision - Laser

Adventages:

* More accurate vs. wheel odometry or IMU
(relative position error 0.1% — 2%)

Necessary when global positioning is not
available

+ Useful for sensor fusion
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Steps

1. Image acquisition and correction
2.Feature detection and description
3.Feature matching

4.Robust matching for pose estimation
5.Pose optimization
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Steps

1. Image acquisition and correction
1. Acquisition using either single cameras, stereo
cameras, or omnidirectional cameras.
2. Correction: preprocessing techniques for lens
distortion removal, noise removal, etc.

e
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Steps

2.Feature detection and description
1. Feature detection: corner detectors (Moravec,
Forstner, Harris, Shi-Tomasi, FAST) or blob
detectors (SIFT, SURF, CENSUR)
2. Feature description: local appearance or invariant
descriptors (SIFT, SURF, BRIEF, ORB, BRISK,
FAST)

e
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Steps

3.Feature matching
Local tracking (LK, KLT)
vs.
Global matching

e
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Table of contents

3. Global feature matching
4. Robust matching for pose estimation
5. Pose optimization

3
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Table of contents

3. Global feature matching
 Similarity measurement
* Mutual consistency
* Motion consistency

3
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Global feature matching
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* Mutual consistency:
only pairs where one point selects each other as the closest

* Motion consistency:
only pairs where one point is accordingly where it should, taking
into account the motion model

“
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Table of contents

4. Robust matching and pose estimation

“
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Robust matching

false matched points (i.e. outliers)

result in errors in pose estimation
(caused in image acquisition (noise, blur, ..), feature detetor/
descriptor or matching) _

remove outliers don't
fitting predominant model.

- RANSAC is the standard
- it stands for random sample

consensus Sourc;:: Scaramuzza
- first by Fishler & Bolles, 1981

“

RANSAC: working principle

\ .. .+ 1. Randomly choose s samples

Typically s = minimum sample size

. \ L ~ that lets fit a model
.. ¢ 20 Fitamodel (e, line) to
. ,‘-'"-\- B those samples

"+ . ", 3. Count the number of inliers
. that approx. fit the model
N (distance to model <d)
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RANSAC: working principle

[—

. 1. Randomly choose s samples
J /“/ Typically s = minimum sample size
L. / that lets fit a model
.. < 2. Fit amodel (e.g., line) to
/ - L those samples
e . . 3. Count the number of inliers
o e . that approx. fit the model
» T (distance to model <d)
/ .o . - 4. Repeat N times
" 5. Choose the model that has
the largest set of inliers

RNSAC: number of iterations

The number of iterations necessary to guarantee a correct solution is:

log(1 —p) s is the number of points to obtain a model
}N = Too(l — (1 | € is the rate of outliers in the data
og(1 —(1—¢)*) p is the probability of success

Example: p=99.9%, s=2, € =25% = N=8.35

Features:
RANSAC is non deterministic, whose solution tends to be
stable when N grows
N is usually multiply by a factor of 10
Advanced implementations estimate & after every iteration
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1. Randomly choose s samples
2. Fit the motion model

Obtain
T — Rip—1 trr—1
k 0 1

Image 1

it can be calculated by minimizing the following points
correspondences: 2D-2D, 3D-3D or 3D-2D

1. Count the number of inliers that approx. fit the
model (distance to model <d)

2. Repeat N times
3. Choose the model that has the largest set of inliers

motion model
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nr. of points

[—
__ log(1—p)
log(1—(1—¢)*) +  For a 6 DOF uncalibrated/calibrated camera:
umber oferaions p-0.99) 8 points non coplanar points algorithm by
o Longguet-Higgins' (1981)
1000 :gEg;:;; + For a 6 DOF calibrated camera:
— 1 poins 5 points are enough Krupta (1913), efficient
e / implementation by Nister (2003)
. / + If 2angles are known:
Humber of teratons (-099) 3 points are enough by Fraundorfer et alt.
— S (2010), 2 angles estimation by far point by
— 2o Narodisky et alt.(2011)
e If 3 angles are known:
s / 2 points are enough by Kneip at alt. (2011)

For planar motion
2 points are enough by Ortin et alt. (2001)
® ' For wheeled vehicles of 2DOF
1 point is enough by Scaramuzza et alt. (2011)

Motion from Image Feature Correspondences: 2D-2D

» The minimal-case solution involves 5-point correspondences

» The solution is found by determining the transformation that
minimizes the reprojection error of the triangulated points in

each image
Rik-1 tik-1 . ‘ ' 2
o = [Rek=t k1] = argmin Y1~ 2(x'.Cy) |
0 1 XC ik
ps Ep =0 Epipolar constraint
E=[f].R Essential matrix
X, X,
pr= N Py =0
Ty Z 2
Y
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nr of points

Is it really better to use minimal sets in RANSAC?

If one is concerned with certain speed requirements, YES

However, might not be a good choice if the image
correspondences are very noisy: in this case, the motion
estimated from a minimal set wil be inaccurate and will exhibit
fewer inliers when tested on all other points

Therefore, when the computational time is not a real concern
and one deals with very noisy features, using a non-minimal set
may be better than using a minimal set

results for 1 point

This video can be seen at

12
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results for 1 point

Ground truth
- - 1 -poin‘l RANSAC
5-point RANSAC

Ground truth comparison with VICO
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results for 5 points
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results for 5 points

Using only visual information provided by
an on-board camera and a know landmark,
estimate camera-aircraft relative position

10/04/13

w.r.t a helipad

\
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results for 5 points
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results for 5 points

X displacement Flight 1
T

Y displacement Flight 1
1000 T T T T T T 1500 T r T T T r
L : : P A Ora S 7o ceedaaaant 4
. 500 W/WWAQ? T 1000 AWMM&\“
r v A
£ of Dy v Y Tal, 1
= e £ 500 U‘D\ o
—-500
. B Visual Odometry or - - VYisual Odometry | -
AusE =171 [ e AMSE - 827
-1000 L L ; - L | ! | N T N i i i
-50
2 4 80 80 100 120 140 160 180 0 20 40 60 8 100 120 140 160 180 200
Z displacement Flight 1
5000 T T T T T T T T
— Mudal Ry
£ 4600 ’N’,_V_\\T e J\w
~ 400/ RN My YAW angle Flight 1
o 44, T ! } . ) . !
: Ba eyt 4 Ao N
4200 N WA ¥ TSN L S isual Odometry v
RMSE = 161 425 S MU data ¥
4000 i i i i i i i A 1 ) - .
0 20 40 60 80 100 120 140 160 180 200 ES ‘\//,\ t\//\ ’/\f 4 A ’
< 40 RS S rv’ i -,/\,ﬂ\ N AT A
= SN CUY I
a8 : : :
RMSE = 2.548, . : ; :
36

I
0 20 40 60 80 100 120 140 160 180 200

37

15



10/04/13

results for 5 points

Hover at 10m
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results for 5 points
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results for 5 points

DR

Manual Landing

1000 RMISE = 8257 R
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Table of contents

5. Pose optimization

e

U.PM. P. Campoy Visual Odometry 41

10/04/13

17



> The uncertainty of the camera pose is a combination of the
uncertainty at (black-solid ellipse) and the uncertainty of the
transformation (gray dashed ellipse)

> The combined covariance is

0 Zix

-
- Zk*l‘](:k—l +JTk.k—1Z/"'I"71JTk-k—l

v, = J|:Zk_| 0 :|Jv

= JE:I\
> The camera-pose uncertainty is always increasing when concatenating
transformations. Thus, it is important to keep the uncertainties of the
Gindividual transformations small

Source Scaramuzza

Windowed Camera-Pose

Optimization

Cln—m Cln—m+2 Cin—1Cin
O O

m
> So far we assumed that the transformations are between consecutive
frames

> Transformations can be computed also between non-adjacent frames and
can be used as additional constraints to improve cameras poses by
minimizing the following

R
Z ICi — Z’ijC./“—
(’ij
> For efficiency, only the last keyframes are used
4 Levenberg-Marquadt can be used Source Scaramuzza

10/04/13
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m
> Similar to pose-optimization but it also optimizes 3D points

arg)r(r’_licnz Pk — ¢(X",Co) >

Ciik

» Inorder to not get stuck in local minima, the initialization
should be close the minimum

> Levenberg-Marquadt can be used Source Scaramuzza

m Source Scaramuzza

= - ,'_?E
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Sufficient illumination in the environment
Dominance of static scene over moving objects

Enough texture to allow apparent motion to be extracted
- - Sufficient scene overlap between consecutive frames
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Other Applications: Mosaics

2 <
—_ g

Ny

questions ?

more info: Www.vision4duav.es
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