Introducción Capítulo 1: Magnitudes físicas, unidades y análisis dimensional.

Introducción

- Capítulo 1: Magnitudes.
 - Leyes Físicas
 - Magnitudes y cantidades físicas.
 - Sistemas de unidades
 - Análisis dimensional.
 - La medida física.

Leyes Físicas

Generalizaciones que proceden de las observaciones de los resultados experimentales

- •Se expresan como <u>ecuaciones matemáticas</u>
- •Relacionan *magnitudes físicas*
- •Se utilizan para hacer <u>predicciones</u> y obtener otras <u>relaciones</u> <u>derivadas</u>

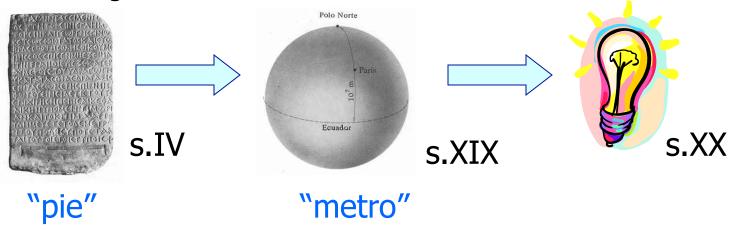
Magnitudes Físicas

Conceptos referidos a **cantidades observables** y **medibles** (**cuantificables**) directa o indirectamente en fenómenos o experimentos físicos.

- •Se representan por símbolos en las ecuaciones
 - Ej:

$$E = m c^2$$
 Albert Einstein (1905)

- □Lleva asociada una unidad de medida
 - Ejemplo
 - Masa: "Cantidad de materia que es atraída por la Tierra con una cierta fuerza". Se mide en kilogramos, libras (1 kg=2.205 pounds), etc.


Cantidades físicas. La medida

Los valores que toma una magnitud física

- Se caracterizan por un valor numérico y una unidad.
 - Ej: 65 cm
- El valor numérico es el resultado de la comparación de la cantidad con la **unidad de la magnitud**.
- Al operar con cantidades físicas se hace tanto con su valor numérico y como con sus unidades.
 - Ej: 400 km / 5 h =80 km/h

<u>Unidades físicas</u>

Son cantidades fijas (**patrones**) tomadas como referencia para medir una magnitud física.

- ■Tiene que determinarse de manera muy exacta
- ■Se presentan por un símbolo (Ej: "m")
- ■Tienen que ser aceptada por toda la comunidad >Sistema Internacional de unidades (S.I.)

Unidades Básicas del Sistema Internacional

- Longitud (1): metro (m)
- Tiempo (t): segundo (s)
- Masa (m): kilogramo (kg)
- Temperatura (T): kelvin (K)
- Cantidad de sustancia (n): mol (mol)
- Intensidad de corriente eléctrica (I):
 amperio (A)

Sistema MKS: Mecánica

Termodinámica

Electricidad

s: Es la duración de 9192631770 períodos de la radiación correspondiente a la transición entre dos niveles hiperfinos del estado fundamental de átomo de Cs133.

kg: Masa prototipo internacional de kilogramo en la Oficina Internacional de Pesos y Medidas (París), equivale al peso de un dm^3 de agua a 4°C.

K: Es la fracción 1/273,16 de la temperatura termodinámica del punto triple del agua.

<u>Unidades derivadas</u>

Se obtienen por combinación de alguna/s de las unidades básicas

- Son todas las demás
- Algunas tienen nombre propio
 - Ejemplo: Fuerza (F): Newton (N)

$$N \equiv kg \cdot m / s^2$$

- ■Medidas angulares
 - >Radian (*rad*):

Ángulo cuyo arco es igual al valor del radio

> Estereoradian (sr):

Ángulo sólido cuya superficie esférica es igual al radio^2

Múltiplos y submúltiplos

Sistema decimal: Potencias de 10

Múltiplos más comunes

```
- Deca (da) 10^1
```

- Hecto (*h*) 10²

- Kilo (k) 10³ (!OJO!, kg NO es múltiplo, es unidad)

- Mega (M) 10⁶ (Ej: $MW=10^6 W$)

- Giga (G) 10^9

– Tera (T) 10¹²

Submúltiplos más comunes

- Deci (*d*) 10⁻¹

- Centi (*c*) 10⁻²

– Mili (*m*) 10⁻³

- Micro (μ) 10⁻⁶ (1 μm también se le llama *micra*)

– Nano (*n*) 10⁻⁹

Múltiplos y submúltiplos

TABLE 1-1

Prefixes for Powers of 10[†]

Multiple	Prefix	Abbreviation
10 ¹⁸	exa	E
10^{15}	peta	P
10^{12}	tera	T
10^9	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{2}	hecto	h
10^{1}	deka	da
10^{-1}	deci	d
10^{-2}	centi	С
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	n
10^{-12}	pico	p
10^{-15}	femto	f
10^{-18}	atto	a

[†] The prefixes hecto (h), deka (da), and deci (d) are not multiples of 10^3 or 10^{-3} and are rarely used. The other prefix that is not a multiple of 10^3 or 10^{-3} is centi (c). The prefixes frequently used in this book are printed in red. Note that all prefix abbreviations for multiples 10^6 and higher are uppercase letters; all others are lowercase letters.

Conversión de unidades

- Debe tratarse de la misma magnitud física
- Se debe conocer la relación entre ambas unidades.
- Las unidades se operan algebraicamente, como las magnitudes.

Procedimiento:

Se escribe la inversa de la unidad de partida divida por su valor en la nueva unidad.

Ejemplo: Pasar 90 km/h a m/s (unidades de velocidad)

$$1km = 1000 m$$
$$1h = 3600 s$$

Factor de conversión

$$90\frac{km}{h} \times \frac{1000m}{1km} \times \frac{1h}{3600s} = 90 \, km/h \times \left(\frac{1000}{3600} \, \frac{m/s}{km/h}\right) = 25 \, m/s$$

<u>Dimensiones</u>

- Área es el producto de 2 longitudes, es decir, longitud x longitud $= L^2$. Tiene unidades de m^2 . Se dice que tiene dimensión = 2.
- Un volumen es el producto de 3 longitudes:L³. Unidades de m³.
 Dimensión = 3.

 Generalizando, para cualquier magnitud física se puede expresar su dimensión como producto de las magnitudes fundamentales elevadas a determinadas potencias.

<u>Dimensiones de las magnitudes</u>

 Es la combinación de unidades básicas que determinan la unidad de cualquier magnitud física

[I]=I

- Se representa con corchetes cuadrados
- Se consideran como magnitudes básicas

```
Longitud [I]=L
Masa [m]=M
Tiempo [t]=T
Temperatura [T]=Θ
Cantidad de sustancia [n]=N
```

- Ejemplo:
 - Densidad: ρ=masa/volumen

Intensidad de corriente

- Unidad de la Densidad=kg/m³.
- Dimensión: [ρ]=ML⁻³
- **Fuerza**: F = m' a => [F]=M L T⁻²

<u>Dimensiones de las magnitudes físicas</u>

TABLE 1-2

Dimensions of Physical Quantities

Quantity	Symbol	Dimension
Area	Α	L^2
Volume	V	L^3
Speed	v	L/T
Acceleration	а	L/T^2
Force	F	ML/T^2
Pressure (F/A)	p	M/LT^2
Density (M/V)	ho	M/L^3
Energy	E	ML^2/T^2
Power (E/T)	P	ML^2/T^3

Ecuaciones dimensionales

- Sirven para relacionar y verificar la consistencia de unidades derivadas con unidades básicas.
- Reglas:
 - >Si se multiplican/dividen magnitudes físicas, se multiplican/dividen sus dimensiones!
 - •Ej: **Presión**=Fuerza/superficie $[P] = \frac{MLT^{-2}}{I^2} = \frac{ML^{-1}T^{-2}}{I^2}$
 - >Sólo se pueden sumar/restar magnitudes con las mismas dimensiones

Ej:

$$p + \frac{1}{2}\rho v^2 \longrightarrow \left[\frac{1}{2}\rho v^2\right] = \left[\rho v^2\right] = ML^{-3}(LT^{-1})^2 = ML^{-1}T^{-2}$$

En una ecuación todos los términos tienen que tener las mismas dimensiones.

•Ej:
$$s = s_0 + v_0 t + 0.5 \ a \cdot t^2$$

Ejemplo

 Verificar dimensionalmente la ecuación que relaciona la masa con la energía.

$$\begin{bmatrix} E \end{bmatrix} = ML^{2}T^{-2}$$

$$\begin{bmatrix} m \end{bmatrix} = M$$

$$\begin{bmatrix} c^{2} \end{bmatrix} = (L^{1}T^{-1})^{2} = L^{2}T^{-2}$$

Se tiene una magnitud física cuya medida vale A=20km²min⁻²g.
 Indicar de qué magnitud se trata y calcular su valor en unidades del SI.

$$A = 20 \left(km \cdot \frac{1000m}{km} \right)^2 \left(\min \frac{60s}{\min} \right)^{-2} \left(g \frac{10^{-3} kg}{g} \right) = 5,56J$$