
Python and Bioinformatics

Pierre Parutto

November 18, 2016

Contents

1 Code And Data Files 2
1.1 Code Files . 2

1.1.1 Importing a Module . 2
1.1.1.1 import . 3
1.1.1.2 from - import 4
1.1.1.3 from - import * 4

1.1.2 Choosing The Best Import Method 5
1.2 Manipulating Data Files . 6

1.2.1 Opening A File . 6
1.2.1.1 Example . 7

1.2.2 Closing A File . 7
1.2.3 Reading A File . 7

1.2.3.1 readline . 8
1.2.3.2 readlines . 8
1.2.3.3 for . 9

1.2.4 Writing In a File . 9
1.3 Useful Functions On Strings . 10

1.3.1 Removing The New Line Character 10
1.3.2 Cutting A String Into Pieces 11

1

Chapter 1

Code And Data Files

In computer science files represent the memory of a computer allowing you to
store information. There exist numerous types of files: text, images, videos,
even softwares and the operating system are contained themselves in files. A
first classification leads to the distinction of two kinds of files that you will
necessarily be confronted to: files containing code and files containing data
(DNA sequences, some text, numbers, . . .). In this chapter we will see how to
handle both types: to import functions and variables from other Python code
files and read and write data in files.

1.1 Code Files

For Python code files, we are going to further distinguish two types of files:

Definition 1 • Modules are Python code files containing only func-
tion and variable definitions;

• Scripts are Python code files that are meant to be executed, they
produce some results (displaying some value, generating a file, . . .).

Modules are meant to group together multiple function and variable defini-
tions. Usually in modules there are no code outside of the definitions (as when
you send me an homework). In the other hand, scripts usually do not define
many functions but possess only code for performing a specific task (for example
the test files). In the following we focus on modules.

1.1.1 Importing a Module

Definition 2 In the context of modules, a name is a function or variable
definition.

In the following subsection we consider the following Python file named
my functions.py:

2

def my_seq(n, u0):

if n == 0:

return u0

return u0 * n * my_seq(n-1, u0) + u0

my_n = 3

We will write the code in a file named my script.py that is in the same
directory as the file my functions.py.

Definition 3 Importing a module consists in fetching one or multiple name(s)
into the program.

There exist three different ways of importing the names defined in my functions.py
into the file my script.py.

1.1.1.1 import

The first way uses the syntax:

import filename

where filename is the name of a Python module without the ”.py” at
the end.

The import statement fetches all the names from the module filename and
prefix them with filename.

Warning

Using the import method, all names are prefixed by the filename:
filename.name.

Example In the file my script.py:

import my_functions

print(my_functions.my_seq(1, 5))

print(my_functions.my_n)

print(my_functions.my_seq(my_functions.my_n, 1))

Produces the output:

30

3

16

3

1.1.1.2 from - import

The second way uses the following syntax:

from filename import name1, name2, ..., namen

Where filename is the name of a Python module without the .py at the end
and name1, name2, ..., namen is a list of names to import.

This command imports only the names name1, ... namen from the module
filename. It does not prefix the names.

Example In the file my script.py:

from my_functions import my_seq, my_n

print(my_seq(1, 5))

print(my_n)

print(my_seq(my_n, 1))

Produces the output:

30

3

16

1.1.1.3 from - import *

The third way uses the syntax:

from filename import *

Where filename is the name of a Python module without the .py at the end.

This command imports all the names from the module filename. It does
not prefix the names.

Example In the file my script.py:

from my_functions import *

print(my_seq(1, 5))

print(my_n)

print(my_seq(my_n, 1))

Produces the output:

30

3

16

4

1.1.2 Choosing The Best Import Method

You must be very careful to avoid name clashes when importing some names. A
name clash appears when you import a name that already exists, you can have
defined it yourself in the file or already imported it from another file, in your
file.

Here is how I advise you to use the different methods:

• import: When you want to import multiple modules that can contain the
same names. The prefix allows you to access specifically a name from a
specific module.

• from - import name1, ..., namen: this is, by default, the method that
you should use.

• from - import *: this is the laziest method as is allows to directly import
all the names from a module without a prefix. Use this method if you
have only 1 import or if you know what you do.

To illustrate these points consider the following example with the files a.py:

var = 1

and the file b.py

var = 5

We will import both files in the file code.py with the three methods:

1. With import:

import a

import b

print(a.var)

print(b.var)

Produces the output:

1

5

Here we can access the variables var from both modules.

2. With from - import name1, ..., namen:

from a import var

from b import var

print(var)

5

Produces the output:

5

Here only the last value of var, from the file b.py, is kept. With this
method it is not possible to access at the same time both the values of
var from a.py and b.py.

3. With from - import *:

from b import *

from a import *

print(var)

Produces the output:

1

This time I imported var from a.py after the one from b.py hence it is the
value from a.py that is kept. With this method also, it is not possible
to access at the same time both the variables.

1.2 Manipulating Data Files

In Python there exists a specific type to represent files, the type File. To ma-
nipulate a file, first you need to open it in the code, then perform the treatments
and finally close it. Closing a file tells your Operating System (Windows, Mac
Os, . . .) that it can release the ressources affected to the file.

1.2.1 Opening A File

To open a file use the function open:

open(filename: str, mode: str) -> File

Where filename is the name of the file you want to open and mode is the
manipulation mode. This function returns a value of type File. The manip-
ulation mode depends on the treatment you want to do on the files, the main
modes are the following:

Name Mode Effect if the file does not exist Effect if the file exists
Read "r" Error (file not found) Nothing
Write "w" Creates it Erase its content
Append "a" Creates it Add new content at the end

There exist multiple other modes that basically perform a combination of
these modes, you can find the full list on the Python documentation here.

6

https://docs.python.org/3.4/library/functions.html#open

Warning

By default Python searches the file in the same directory as the script.

1.2.1.1 Example

Consider the code file mycode.py:

f = open("toto.txt", "r")

It tries to open for reading (mode "r") the file named "toto.txt" that is
located in the same folder as the file mycode.py.

Remark

You can also open a file by giving its full location:

f = open("C:\lala\pooo\toto.txt", "r")

Opens the file named toto.txt located in the directory C:\lala\pooo.

1.2.2 Closing A File

Closing a file is really easy:

f.close()

where f is some variable of type File.

Warning

DO NOT FORGET TO CLOSE ALL THE FILES YOU HAVE OPENED
AFTER YOU ARE DONE WITH THEM.

1.2.3 Reading A File

In the following we consider that the variable f represents a file opened in
reading mode. Consider also the file bohemian.txt:

Is this the real life?

Is this just fantasy?

Caught in a landslide,

No escape from reality.

The easiest way to read files in Python is to read a complete line from it. In
your computer a new line is represented by the character "\n".

There exist three ways to read a file in Python.

7

1.2.3.1 readline

The readline function allows to read 1 line from a file:

varname.readline() -> str

where varname is a variable of type File.

Each time readline is called on a file, it returns the next unread line. When
the last line of the file have been read, readline returns the empty string "".

Example In a Python interpreter, in the same directory as the file bohemian.txt:

>>> f = open("bohemian.txt", "r")

>>> f.readline()

"Is this the real life?\n"

>>> f.readline()

"Is this just fantasy?\n"

>>> f.readline()

"Caught in a landslide,\n"

>>> f.readline()

"No escape from reality.\n"

>>> f.readline()

""

>>> f.readline()

""

>>> f.close()

As you can see, each call to readline returns the next line of the file. When
the file is finished, after the fourth call to readline, all calls to readline on
this file will return the empty string "".

1.2.3.2 readlines

The function readlines directly returns the list of all the lines in the file:

varname.readlines() -> list

After a call to readlines, a file is considered to be finished, hence all the
other calls to readlines will return the empty list [].

Example In a Python interpreter, in the same directory as the file bohemian.txt:

>>> f = open("bohemian.txt", "r")

>>> f.readlines()

["Is this the real life?\n", "Is this just fantasy?\n" \

"Caught in a landslide,\n", "No escape from reality.\n"]

>>> f.readlines()

[]

8

>>> f.close()

The first call to readlines returns the list of all lines while the second call
returns the empty list.

1.2.3.3 for

Finally, it is also possible to read a file line by line directly using a for loop:

for varname in f:

INSTRUCTION

GROUP

Here varname will take the value of all successive lines of the file. At the
first turn the first line, the second turn the second line, . . ., until the end on the
file.

Example In a Python interpreter, in the same directory as the file bohemian.txt:

>>> f = open("bohemian.txt", "r")

>>> for line in f:

line

’Is this the real life?\n’

’Is this just fantasy?\n’

’Caught in a landslide,\n’

’No escape from reality.\n’

>>> f.close()

Remark

I advise you to use the for loop method by default.

1.2.4 Writing In a File

To write in a file, the syntax is the following:

varname.write(s: str) -> None

where varname is of type File opened in writing mode.

This writes the string s at the end of the file.

Warning

write does not put a line ending character "\n". Hence if you want to
finish the line in your file you have to add "\n" at the end of the string
you write.

9

Example In the Python interpreter:

>>> f = open("coucou.yolo", "w")

>>> f.write("TinkyWinky")

>>> f.write("laalaa\n")

>>> f.write("Po" + "\n")

>>> f.close()

Creates the file coucou.yolo in the directory where your interpreter is set, it
contains:

TinkyWinkylaalaa

Po

The two first calls to write only produce one line in the file as there are no
"\n" character in the first call.

1.3 Useful Functions On Strings

I will present you two functions on strings that are useful when reading files.

1.3.1 Removing The New Line Character

Two simple ways to remove a "\n" character at the end of a string s are the
following:

1. Using the slicing: s[:len(s)-1] (equivalent to s[:-1]).

2. Using the rstrip function: s.rstrip("\n"). The rstrip function has
the following prototype: varname.rstrip(c: str) -> str where varname
is a variable of type str. It removes all the successive characters c at the
end of the string varname.

Example In the interpreter:

>>> "ABC\nDEF\n"[:-1]

"ABC\nDEF"

>>> "ABC\nDEF\n".rstrip("\n")

"ABC\nDEF"

>>> "ABC\nDEF\n\n".rstrip("\n")

"ABC\nDEF"

Note that rstrip only removes the characters at the end of the string, hence
in examples 2 and 3 the "\n" character in the middle of the string remains.

10

1.3.2 Cutting A String Into Pieces

The function split allows to cut a string into a list of sub-strings:

varname.split(c: str) -> list

where varname is a variable of type str.

split splits the string varname at each positions where the character c

appears. It produces the list of all the obtained sub-strings.

Example In the interpreter:

>>> "1,2,3".split(",")

["1", "2", "3"]

>>> "1,2,,3".split(",")

["1", "2", "", "3"]

Note that in the second case, as there are two following coma, it creates an
empty string in the list.

11

	Code And Data Files
	Code Files
	Importing a Module
	import
	from - import
	from - import *

	Choosing The Best Import Method

	Manipulating Data Files
	Opening A File
	Example

	Closing A File
	Reading A File
	readline
	readlines
	for

	Writing In a File

	Useful Functions On Strings
	Removing The New Line Character
	Cutting A String Into Pieces

