1. ESPACIO EUCLÍDEO. ISOMETRÍAS

Muchos de los fenómenos que se investigan en la geometría utilizan nociones como las de longitud de un vector y ángulo entre vectores. Para introducir estos dos conceptos en los \mathbb{R} -espacios vectoriales se define el producto escalar. Un \mathbb{R} -espacio vectorial al que se asigna un producto escalar se denomina espacio vectorial euclídeo. En este capítulo trabajaremos, principalmente, con \mathbb{R} -espacios vectoriales euclídeos de dimensión finita.

1.1. PRODUCTO ESCALAR. LONGITUDES Y ÁNGULOS

Definición 1. (Producto escalar. Espacio vectorial euclídeo.)

Sea V un \mathbb{R} -espacio vectorial. Un producto escalar asociado a V es una aplicación $\langle \ , \ \rangle : V \times V \to \mathbb{R}$ que verifica las propiedades siguientes:

- 1. $\langle u, v \rangle = \langle v, u \rangle$ para todo $u, v \in V$.
- 2. $\langle u+v,w\rangle = \langle u,w\rangle + \langle v,w\rangle$ para todo $u,v,w\in V$.
- 3. $\langle \lambda u, v \rangle = \lambda \langle u, v \rangle$ para todo $u, v \in V$, $\lambda \in \mathbb{R}$.
- 4. $\langle u, u \rangle > 0$ para todo $u \neq \bar{0}$.

Diremos entonces que el par (V, \langle , \rangle) es un espacio vectorial euclídeo.

Si la aplicación \langle , \rangle cumple las propiedades 1, 2 y 3 decimos que es una forma bilineal simétrica. Si, además, cumple la propiedad 4, se dice que es definida positiva y se habla de producto escalar asociado a V.

Propiedades.

- a) $\langle v, \bar{0} \rangle = 0$ para todo $v \in V$.
- b) $\langle \lambda u + \mu v, w \rangle = \lambda \langle u, w \rangle + \mu \langle v, w \rangle$ para todo $u, v, w \in V, \lambda, \mu \in \mathbb{R}$.
- c) $\langle v, v \rangle = 0$ si y sólo si $v = \bar{0}$.

Definición 2. Un ejemplo de espacio vectorial euclídeo, y que será el más utilizado por nosotros, es el espacio vectorial $V = \mathbb{R}^n$, al que asociamos el producto escalar usual que se define del siguiente modo:

Dados
$$x, y \in \mathbb{R}^n$$
 con $x = (x_1, \dots, x_n)$ e $y = (y_1, \dots, y_n)$,

$$\langle x, y \rangle = x_1 y_1 + x_2 y_2 + \dots + x_n y_n.$$

1.2. EXPRESIÓN MATRICIAL DEL PRODUCTO ESCALAR

Dado un espacio vectorial euclídeo de dimensión finita, (V, \langle , \rangle) , y dada una base de $V, B = \{e_1, \ldots, e_n\}$, denotamos $a_{ij} = \langle e_i, e_j \rangle$. Llamamos matriz de Gram respecto de B a la matriz $A = (a_{ij})$.

Por la primera propiedad de los productos escalares, se deduce que A es una matriz simétrica $(a_{ij} = a_{ji} \text{ para todo par } i, j)$

Una vez conocida la matriz de Gram asociada a un producto escalar con respecto a una base B, es inmediato calcular el producto escalar de cualesquiera dos vectores $x,y\in V$ haciendo uso de dicha matriz. En efecto, si x e y tienen coordenadas con respecto a B

$$x_B = (x_1, \dots, x_n)$$
 $y_B = (y_1, \dots, y_n),$

entonces

$$\langle x, y \rangle = \langle x_1 e_1 + \dots + x_n e_n, y_1 e_1 + \dots + y_n e_n \rangle$$

$$= \sum_{i,j=1}^{n} x_i y_j \langle e_i, e_j \rangle = \sum_{i,j=1}^{n} a_{ij} x_i y_j = X^t A Y$$

siendo
$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}$$
 e $Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}$.

De este modo obtenemos la expresión matricial del producto escalar con respecto a la base B,

$$\langle x, y \rangle = X^t A Y.$$

Cabe preguntarse, si se elige otra base, B', cuál será la relación entre la nueva matriz de Gram asociada a esta base, A', y la matriz A asociada a la base B. Sean $x, y \in V$ con coordenadas

$$x_B = (x_1, \dots, x_n), \quad x_{B'} = (x'_1, \dots, x'_n)$$

$$y_B = (y_1, \dots, y_n), \quad y_{B'} = (y'_1, \dots, y'_n)$$

Denotamos
$$X' = \begin{pmatrix} x'_1 \\ \vdots \\ x'_n \end{pmatrix}$$
 e $Y' = \begin{pmatrix} y'_1 \\ \vdots \\ y'_n \end{pmatrix}$. Asimismo, denotamos por P

a la matriz de cambio de base de B' en B.

Resulta

$$\langle x, y \rangle = X^t A Y = X'^t A' Y'$$

Por otro lado,

$$\langle x, y \rangle = (PX')^t A (PY') = X'^t (P^t A P) Y'$$

De modo que la relación entre las dos matrices de Gram es de congruencia:

$$A' = P^t A P$$

Proposición 1. Si A es una matriz $n \times n$ definida positiva (simétrica y con todos los autovalores reales y positivos), entonces

$$\langle X, Y \rangle = X^t A Y, \ con \ X, Y \in \mathbb{R}^n$$

define un producto escalar en \mathbb{R}^n . De hecho, todos los productos escalares definidos en espacios vectoriales de dimensión finita tendrán una expresión matricial de este tipo.

Para determinar si una matriz A es definida positiva, existen varios criterios que no requieren del cálculo del signo de los autovalores. Enunciamos uno en la siguiente proposición.

Proposición 2. (Criterio de Sylvester)

Sea $A \in M_n(\mathbb{R})$ simétrica y sea $\Delta_i = Det(A_i)$, donde

$$A_i = \left(\begin{array}{ccc} a_{11} & \cdots & a_{1i} \\ \vdots & \ddots & \vdots \\ a_{i1} & \cdots & a_{ii} \end{array}\right)$$

Entonces A es definida positiva si y sólo si $\Delta_i > 0$ para todo $i = 1, \ldots, n$.

Definición 3. (Norma o módulo. Distancia)

La longitud, norma o módulo de un vector $v \in V$ se define como

$$||v|| = \sqrt{\langle v, v \rangle}$$

Si ||v|| = 1, se dice que v es unitario.

La distancia entre dos vectores $u, v \in V$ se define como

$$d(u, v) = ||u - v||$$

Propiedades.

- 1. ||v|| > 0 y ||v|| = 0 si y sólo si $v = \bar{0}$.
- 2. $\|\lambda v\| = |\lambda| \|v\|$ para todo $\lambda \in \mathbb{R}$ y para todo $v \in V$.
- 3. Para todo $u,v\in V, \|u+v\|\leq \|u\|+\|v\|$. Esta propiedad se conoce como desigualdad triangular o de Minkowski.
- 4. Dado $v \neq \bar{0}$, $\frac{v}{\|v\|}$ es un vector unitario.

5. Para todo $u, v \in V$, $|\langle u, v \rangle| \leq ||u|| ||v||$. Esta propiedad se conoce como desigualdad de Cauchy-Schwarz.

Definición 4. (Ángulo entre dos vectores. Ortogonalidad)

- i) Para todo par de vectores no nulos $u, v \in V$, el ángulo entre u y v se define como el único número $\theta \in [0, \pi]$ tal que $\cos \theta = \frac{\langle u, v \rangle}{\|u\| \|v\|}$.
- ii) Dados $u, v \in V$ no nulos, diremos que son ortogonales o perpendiculares $si \langle u, v \rangle = 0$. Obsérvese que u, v son ortogonales si y sólo si $\cos \theta = 0$, siendo θ el ángulo entre u y v, lo que es equivalente a decir que $\theta = \pi/2$.
- iii) Una base B de vectores de V es ortogonal si sus vectores son ortogonales entre sí. Si los vectores de B son además unitarios, entonces se dice que la base es ortonormal.

Propiedades.

- 1. Si $\{u_1, \ldots, u_k\}$ son vectores no nulos de V, ortogonales entre sí, entonces son linealmente independientes.
- 2. Si $B = \{u_1, \ldots, u_n\}$ es una base ortogonal de V, entonces $B' = \{\frac{u_1}{\|u_1\|}, \ldots, \frac{u_n}{\|u_n\|}\}$ es una base ortonormal de V.

Proposición 3. Sea $B = \{e_1, \dots, e_n\}$ una base ortogonal del espacio vectorial euclídeo V. Entonces, dado $x \in V$,

$$x = \frac{\langle x, e_1 \rangle}{\|e_1\|^2} e_1 + \dots + \frac{\langle x, e_n \rangle}{\|e_n\|^2} e_n$$

esto es, $x_B = (x_1, \ldots, x_n)$ con $x_i = \frac{\langle x, e_i \rangle}{\|e_i\|^2}$. A las coordenadas x_i se les llama coeficientes de Fourier de x con respecto a la base ortogonal B.

1.3. MÉTODO DE GRAM-SCHMIDT. PROYECCIONES

Teorema 1. (Gram-Schmidt) Dada una base $B = \{u_1, \ldots, u_n\}$ de un espacio vectorial euclídeo V, existe una base ortogonal $B' = \{e_1, \ldots, e_n\}$ tal que $L(u_1, \ldots, u_r) = L(e_1, \ldots, e_r)$ para todo $r = 1, \ldots, n$. Los vectores de la base B' serán:

$$e_{1} = u_{1}$$

$$e_{2} = u_{2} - \frac{\langle u_{2}, e_{1} \rangle}{\|e_{1}\|^{2}} e_{1}$$

$$\vdots$$

$$e_{n} = u_{n} - \frac{\langle u_{n}, e_{1} \rangle}{\|e_{1}\|^{2}} e_{1} - \dots - \frac{\langle u_{n}, e_{n-1} \rangle}{\|e_{n-1}\|^{2}} e_{n-1}$$

Corolario 1. Si $\{w_1, \ldots, w_r\}$ es un conjunto ortogonal de vectores no nulos de V, entonces existe una extensión a una base ortogonal.

Definición 5. (Subespacios ortogonales. Complemento ortogonal)

- i) Un vector no nulo $v \in V$ se dice que es ortogonal a un subespacio vectorial W de V, denotado por $v \perp W$, si $\langle v, w \rangle = 0$ para todo $w \in W$. Esto equivale a probar que v es ortogonal a los vectores de una base de W
- ii) Dos subespacios vectoriales W_1, W_2 de V se dicen ortogonales, algo que denotaremos por $W_1 \perp W_2$, si para todo $w_1 \in W_1$ y $w_2 \in W_2$ se tiene que $\langle w_1, w_2 \rangle = 0$. Esto equivale a probar que los vectores de una base de W_1 son ortogonales a los vectores de una base de W_2 .
- iii) Si W es un subespacio vectorial de V de dimensión k < n, el conjunto

$$W^{\perp} = \{ v \in V : \langle v, w \rangle = 0 \text{ para todo } w \in W \}$$

es un subespacio vectorial de V de dimensión n-k y se denomina complemento ortogonal de W. De hecho, $V=W\oplus W^{\perp}$.

Definición 6. (Proyección ortogonal)

Sea W un subespacio vectorial de V. Como $V = W \oplus W^{\perp}$, resulta que todo $v \in V$ se puede escribir de modo único como v = w + u con $w \in W$ y $u \in W^{\perp}$. El vector w recibe el nombre de proyección ortogonal de v sobre W y se denota por $w = P_W(v)$, mientras que u es la proyección ortogonal de v sobre W^{\perp} y se escribe $u = P_{W^{\perp}}(v)$.

El siguiente resultado proporciona un método rápido para calcular proyecciones ortogonales sobre un subespacio vectorial.

Proposición 4. Sea W un subespacio vectorial de V y sea $v \in V$. Si $B_W = \{w_1, \ldots, w_r\}$ es una base ortogonal de W, entonces, la proyección ortogonal de v sobre W es

$$P_W(v) = \frac{\langle v, w_1 \rangle}{\|w_1\|^2} w_1 + \dots + \frac{\langle v, w_r \rangle}{\|w_r\|^2} w_r$$

Definición 7. (Matriz ortogonal) Una matriz $A \in M_n(\mathbb{R})$ es ortogonal si A es invertible y $A^{-1} = A^t$, es decir, $AA^t = Id$.

Propiedades. Toda matriz ortogonal $A \in M_n(\mathbb{R})$ cumple las propiedades siguientes:

- i) Los vectores fila o columna de A forman una base ortonormal de \mathbb{R}^n con el producto escalar usual.
- ii) $Det(A) = \pm 1$. Diremos que A es ortogonal directa si Det(A) = 1 y diremos que es ortogonal inversa si Det(A) = -1.

Proposición 5. Dado el espacio vectorial $V = \mathbb{R}^n$, la expresión matricial de la proyección ortogonal, P, sobre un subespacio W (a lo largo de W^{\perp}) es

$$P = [\mathbf{W}|\mathbf{0}][\mathbf{W}|\mathbf{W}^{\perp}]^{-\mathbf{1}} = [\mathbf{W}|\mathbf{W}^{\perp}] \left(\begin{array}{cc} I & 0 \\ 0 & 0 \end{array}\right) [\mathbf{W}|\mathbf{W}^{\perp}]^{-\mathbf{1}}$$

siendo $[\mathbf{W}|\mathbf{W}^{\perp}]$ una matriz cuyas columnas son bases de W y W^{\perp} respectivamente.

Si, además, elegimos las columnas de la matriz $[\mathbf{W}|\mathbf{W}^{\perp}]$ de modo tal que son bases ortonormales de W y W^{\perp} respectivamente, dicha matriz es ortogonal y, por tanto, $[\mathbf{W}|\mathbf{W}^{\perp}]^{-1} = [\mathbf{W}|\mathbf{W}^{\perp}]^{\mathbf{t}}$. En ese caso,

$$P = [\mathbf{W}|\mathbf{W}^{\perp}] \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} [\mathbf{W}|\mathbf{W}^{\perp}]^{\mathbf{t}} \quad \text{ } \delta \quad \mathbf{P} = [\mathbf{W}|\mathbf{0}][\mathbf{W}|\mathbf{W}^{\perp}]^{\mathbf{t}}$$

Observación 1. En \mathbb{R}^2 , con el producto escalar usual, la matriz P de la proyección ortogonal sobre la recta $W = L\{v\}$, siendo $v = (\cos \theta, \sin \theta)$, es:

$$P = \begin{pmatrix} \cos \theta & 0 \\ \sin \theta & 0 \end{pmatrix} \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}^t = \begin{pmatrix} \cos^2 \theta & \sin \theta \cos \theta \\ sen \theta \cos \theta & \sin^2 \theta \end{pmatrix}$$

1.4. ISOMETRÍAS

En esta sección nos interesamos por el estudio de aquellas aplicaciones lineales $f: V \to V'$ definidas entre espacios vectoriales euclídeos que conservan distancias y ángulos.

Definición 8. (Isometría)

Un homomorfismo $f:V\to V'$ es una isometría o aplicación ortogonal si conserva el producto escalar, es decir, si

$$\langle f(x), f(y) \rangle = \langle x, y \rangle$$
 para todo $x, y \in V$.

Propiedades.

- 1. Si f es una isometría, $||x|| = \sqrt{\langle x, x \rangle} = \sqrt{\langle f(x), f(x) \rangle} = ||f(x)||$, de modo que se preserva la norma de los vectores. El recíproco también será cierto, esto es, si ||x|| = ||f(x)|| para todo $x \in V$, entonces f es una isometría.
- 2. Si f es una isometría, α es el ángulo entre x e y y β es el ángulo entre f(x) y f(y), entonces $\cos \alpha = \frac{\langle x,y \rangle}{\|x\| \|y\|} = \frac{\langle f(x),f(y) \rangle}{\|f(x)\| \|f(y)\|} = \cos \beta$, de modo que también se conservan los ángulos entre vectores.

- 3. Si $\{u_1, \ldots, u_r\}$ son ortogonales (respectivamente ortonormales), entonces $\{f(u_1), \ldots, f(u_r)\}$ son también ortogonales (respectivamente ortonormales).
- 4. Si $f: V \to V'$ es una isometría con dim(V) = dim(V') = n, entonces f es un isomorfismo y f^{-1} es también una isometría.
- 5. Sea $f: V \to V'$ con dim(V) = dim(V') = n y sea $B = \{v_1, \ldots, v_n\}$ una base ortonormal de V. Si $\{f(v_1), \ldots, f(v_n)\}$ es una base ortonormal de V' entonces f es una isometría.

Caracterización matricial de una isometría. Sea $f: V \to V$ un endomorfismo del espacio vectorial euclídeo V. Si B es una base ortonormal de V, entonces f es una isometría si y sólo si su matriz asociada A = M(f, B) respecto de la base B es ortogonal, esto es, $A^t = A^{-1}$.

Definición 9. (Transformaciones directas e inversas)

Sea $f: V \to V$ una isometría. Si Det(f) = 1, esto es, el determinante de cualquiera de sus matrices asociadas es 1, entonces decimos que f es una transformación directa. Si Det(f) = -1, entonces decimos que f es una transformación inversa.

1.5. ISOMETRÍAS EN \mathbb{R}^2 Y \mathbb{R}^3

Aunque los próximos resultados son válidos para espacios euclídeos de dimensión 2 y 3 cualesquiera y se generalizan fácilmente a espacios de dimensión n, nosotros trabajaremos sólo con \mathbb{R}^2 y \mathbb{R}^3 dotados del producto escalar usual.

Teorema 2. (Isometrías de \mathbb{R}^2)

Consideremos \mathbb{R}^2 con el producto escalar usual y una isometría $f: \mathbb{R}^2 \to \mathbb{R}^2$. Pueden darse dos situaciones:

i) Si Det(f) = 1, entonces para toda base ortonormal B

$$M(f,B) = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}$$

En este caso, la isometría f es una rotación, también denominada giro de ángulo α . El valor de α no depende de la base ortonormal elegida, sino de f. Dos casos particulares son $\alpha=0$ para el que f=Id y $\alpha=\pi$ para el que f=Id (simetría respecto del origen).

ii) Si Det(f) = -1, entonces para toda base ortonormal B

$$M(f,B) = \begin{pmatrix} \cos \alpha & \sin \alpha \\ \sin \alpha & -\cos \alpha \end{pmatrix}$$

En este caso, el valor de α depende de la base elegida. De hecho, existe una base ortonormal $B' = \{v_1, v_2\}$ tal que

$$M(f, B') = \left(\begin{array}{cc} 1 & 0\\ 0 & -1 \end{array}\right)$$

En consecuencia, la aplicación f del caso ii) es una simetría respecto de la recta determinada por el vector v_1 . Aquí se tienen dos subespacios propios: $L(v_1)$ con autovalor 1 y $L(v_2)$ con autovalor -1.

Observación 2. En \mathbb{R}^2 , con el producto escalar usual, la matriz S de la simetría sobre la recta $W = L\{v\}$, siendo $v = (\cos \theta, \sin \theta)$, es:

$$S = 2P - I = \begin{pmatrix} 2\cos^2\theta - 1 & 2\sin\theta\cos\theta \\ 2\sin\theta\cos\theta & 2\sin^2\theta - 1 \end{pmatrix} = \begin{pmatrix} \cos 2\theta & \sin 2\theta \\ \sin 2\theta & -\cos 2\theta \end{pmatrix}$$

siendo P la matriz de la proyección sobre la recta $L\{v\}$.

Observación 3. Cualquier simetría cumple $S^2 = I$, dado que $S^2 = (2P - I)^2 = 4P^2 - 4P + I = I$.

Teorema 3. (Isometrías de \mathbb{R}^3)

Consideremos \mathbb{R}^3 con el producto escalar usual y una isometría $f: \mathbb{R}^3 \to \mathbb{R}^3$. Pueden darse dos situaciones:

i) Si Det(f) = 1, entonces existe una base ortonormal $B = \{v_1, v_2, v_3\}$ tal que

$$M(f,B) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha \\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

En este caso, f es una rotación de ángulo α alrededor de la recta $L(v_1)$ engendrada por el vector (autovector con autovalor asociado 1) v_1 . El plano $L(v_2, v_3)$ es invariante por f, que actúa sobre él generando una rotación de ángulo α . Un caso particular es $\alpha = 0$ para el que f = Id.

ii) Si Det(f) = -1, entonces existe una base ortonormal $B = \{v_1, v_2, v_3\}$ tal que

$$M(f,B) = \begin{pmatrix} -1 & 0 & 0\\ 0 & \cos \alpha & -\sin \alpha\\ 0 & \sin \alpha & \cos \alpha \end{pmatrix}$$

En este caso, f es la composición de la rotación del apartado anterior con una simetría ortogonal respecto del plano $L(v_2, v_3)$. En esta situación, v_1 es un autovector con autovalor asociado -1. Un caso particular es $\alpha = 0$ para el que f representa una simetría ortogonal respecto de $L(v_2, v_3)$.

1.6. ENDOMORFISMOS SIMÉTRICOS

Definición 10. Dado un espacio vectorial euclídeo, V, se dice que un endomorfismo $f: V \to V$ es simétrico si verifica

$$\langle f(u), v \rangle = \langle u, f(v) \rangle \quad \forall u, v \in V$$

Proposición 6. Dado un endomorfismo $f: V \to V$, definido en un espacio euclídeo de dimensión finita, se tiene que f es simétrico si y sólo si su matriz asociada respecto a una base ortonormal es simétrica.

Proposición 7. Un endomorfismo simétrico tiene todos sus autovalores reales y siempre es diagonalizable. Más aun, siempre es posible encontrar una base ortonormal formada por vectores propios.

Corolario 2. Como consecuencia del resultado anterior, se tiene que toda matriz simétrica, $A \in M_n(\mathbb{R})$, es diagonalizable ortogonalmente, esto es, existe $P \in M_n(\mathbb{R})$ y $D \in M_n(\mathbb{R})$ tales que

$$P^{-1}AP = P^TAP = D.$$

siendo D la matriz diagonal de autovalores y P la matriz de paso ortogonal $(P^T = P^{-1})$ cuyas columnas son los vectores propios unitarios de la base ortonormal.

Teorema 4. Todo endomorfismo $f: V \to V$, no singular, definido sobre un espacio euclídeo de dimensión finita, se puede escribir como la composición de un endomorfismo simétrico, s, y una transformación ortogonal, o.

$$f = o \circ s$$

Escrito en forma matricial, podemos decir que toda matriz cuadrada no singular, F, se puede escribir como el producto de una matriz simétrica S y una matriz ortogonal O

$$F = OS$$