
Homework

Python-2

Sup’Biotech 3

Python

Pierre Parutto

December 3, 2016

Homework: Python-2
2016 - 2017

Preamble

Document Property

Authors Pierre Parutto
Version 1.0
Number of pages 10

Contact

Contact the assistant team at: supbiotech-bioinfo-bt3@googlegroups.com

Copyright

The use of this document is strictly reserved to the students from the Sup’Biotech school. This
document must have been downloaded from www.intranet.supbiotech.fr, if this is not the case
please contact the author(s) at the address given above.

c©Assistants Sup’Biotech 2016.

1 / 10

supbiotech-bioinfo-bt3@googlegroups.com
www.intranet.supbiotech.fr

Homework: Python-2
2016 - 2017

Contents

1 Introduction 3
1.1 File Architecture . 3
1.2 Submission . 3
1.3 Cheating . 3

2 Example 3
2.1 Question . 3
2.2 Answer . 3
2.3 Testing your code . 4

3 Introduction 4

4 Base Counting 5
4.1 Bases And Distance (4 points) . 5

Example . 5
4.2 Count Codons (3 points) . 5

Example . 6

5 Base Pairing 6
5.1 Pairing Types For RNA Sequences (2 points) . 6

Example . 7
5.2 Is Recognized (3 points) . 7

Example . 7
5.3 Recognized Bases (4 points) . 8

Example . 8

6 Distance Between Nucleic Sequences 9
6.1 Hamming Distance Between Multiple Sequences (4 points) 9

Example . 9

2 / 10

Homework: Python-2
2016 - 2017

1 Introduction

In this homework we will apply the basic programming skills that you have just acquired to crack
some biology-related questions.

1.1 File Architecture

You must respect the following architecture for your work:
login l

AUTHORS

src

files.py

You must have a folder named with your login, this folder must contain:

1. A text file named AUTHORS containing your first and last names.

2. A folder named src that contains your code files.

1.2 Submission

• Deadline: until Wednesday November 9, 23h42;

• Submission: a zip file named: login l.zip to upload on the bioinformatics intranet.

A bad architecture of your submission may result in a 2 points penalty.

1.3 Cheating

Basically, DO NOT CHEAT. Your work will be automatically tested against cheating. If
two people are detected as cheaters, they will receive the grade 0 for the homework and the
administration will be told of their attempt. All detected cheaters are treated equally, I do not
care who wrote the code and who took it.

2 Example

Here is an example of how to answer an homework question.

2.1 Question

File: toto.py

Write the function called my_sum(a: int, b:int) -> int that returns the sum of a and b.

2.2 Answer

The content of the file toto.py is thus:

def my_sum(a, b):

return a + b

3 / 10

http://supbiotech-bioinfo.sites.djangoeurope.com

Homework: Python-2
2016 - 2017

2.3 Testing your code

Although not mandatory in this first homework, I strongly advise you to test your code.
You can do that by calling your function with some values and checking that the answer is what
you expect. For example, your file toto.py becomes:

def my_sum(a, b):

return a + b

print(my_sum(5, 9) == 16)

print(my_sum(5, 0) == 5)

print(my_sum(5, -5) == 0)

And the Python output is:

True

True

True

You must remove all your tests before you submit your code. In your code files I
want only function declaractions and nothing else.

3 Introduction

The primary sequence of a nucleic molecule is the succession of bases it contains. These sequences
are conventionally represented from the 5’ end to the 3’ end.

Representing Bases Bases constituting nucleic molecules are represented in computers by a
single symbol defined by the IUPAC:

Symbol Description Bases Represented
A Adenine A

T Thymine T

G Guanine G

C Cytosine C

U Uracile U

I Inosine I

W Weak AT

S Strong GC

M Amino A C

K Keto TG

R Purine A G

Y Pyrimidine T C

B not A TGC

V not T A GC

H not G AT C

D not C ATG

N Any ATGC

Primary Sequences The primary sequence of a nucleic molecule is traditionally represented
as a string containing only the previous symbols. For example: "ATTGT" or "AUCCG".

Ambiguous sequences The characters after the 6th row of the table are used to represent an
ambiguity in the sequence. For example a fail in the sequencing or equivalent bases in a specific
context. For example: "AGR" represents both the sequences "AGA" and "AGG".

4 / 10

Homework: Python-2
2016 - 2017

Alphabet We call alphabet an ensemble of characters. We say that a sequence is constructed
over an alphabet if it contains only characters included in it. For example, considering the alphabet
Ω = ATGC, a sequence constructed over Ω could be "ATTTG" or "ACACT" but not "AECG".

4 Base Counting

File: counting.py

4.1 Bases And Distance (4 points)

Write the function count_bases_dist(s: str, p: int, max_dist: int) -> dict that given
a sequence s over the alphabet AUCG, a valid position p in s and a maximal distance max_dist,
returns the number of bases of each type appearing up to max_dist characters (included) away
from p (including the character at p). The returned value is a dictionnary that associates a base
(a string) to the number of times it appears (an int).

Note: If there are less than max_dist bases between p and any end of s, you have to stop at
the border.

Example

>>> count_bases_dist("AUCGA", 2, 1)

{"A":0, "U":1, "C":1, "G":1}

>>> count_bases_dist("AUCCAUAUCG", 5, 3)

{"A":2, "U":2, "C":3, "G":0}

>>> count_bases_dist("CGCGAUGC", 6, 4)

{"A":1, "U": 1, "C":2, "G": 2}

Correction:

def count_bases_dist(s, p, max_dist):

res = {"A": 0, "U": 0, "C": 0, "G": 0}

for i in range(max(0, p - max_dist), min(len(s), p + max_dist + 1)):

res[s[i]] = res[s[i]] + 1

return res

4.2 Count Codons (3 points)

Write the function count_codons(s: str) -> dict that given a nucleic sequence over the alpha-
bet AUCG returns a dictionnary associating each codon appearing in s to the number of times it
appears.

Note: Codons not appearing in s must not appear in the dictionary.

Note: Codons start at the first character of s and do not overlap. For example the sequence
"AUCAGGCAC" contains the three codons: "AUC", "AGG" and "CAC".

5 / 10

Homework: Python-2
2016 - 2017

Note: When the last characters of s form an incomplete codon, for example if there are only
one or two characters remaining in s, then just ignore them. For example the sequence "AUCAG"

contains only one codon: "AUC".

Example

>>> count_codons("AUC")

{"AUC": 1}

>>> count_codons("AUCGG")

{"AUC": 1}

>>> count_codons("AGCCCGAUUAGC")

{"AGC": 2, "CCG": 1, "AUU": 1}

Correction:

def count_codons(s):

res = {}

for i in range(0, len(s)-2, 3):

if s[i:i+3] in res:

res[s[i:i+3]] = res[s[i:i+3]] + 1

else:

res[s[i:i+3]] = 1

return res

5 Base Pairing

File: pairing.py

5.1 Pairing Types For RNA Sequences (2 points)

Each base from an RNA molecule car pair to another base, through the formation of hydrogen
bonds, either from the same molecule or from another. Two types of pairing are to be distinguished:

• Watson-Crick (canonical) pairing:

Base Pairs with
A U
U A
C G
G C

• Wobble (non-canonical) pairing:

Base Pairs with
G U
U G

6 / 10

Homework: Python-2
2016 - 2017

Bases pairing together are called complementary bases.

Wobble pairing consists in an ill-formed pairing where only 2 hydrogen bonds are formed be-
tween the molecules and are thus more fragile.

Write the function pair_type(b1: str, b2: str) -> str that given two bases b1 and b2

from the alphabet AUGC, returns "NO" if b1 and b2 cannot pair, "WC" if they can form a Watson-
Crick pairing and "WO" if they can from a wobble pairing.

Example

>>> pair_type("A", "U")

"WC"

>>> pair_type("A", "A")

"NO"

>>> pair_type("U", "G")

"WO"

Correction:

def pair_type(b1, b2):

if b1 + b2 == "AU" or b1 + b2 == "UA" or b1 + b2 == "GC" or b1 + b2 == "CG":

return "WC"

elif b1 + b2 == "GU" or b1 + b2 == "UG":

return "WO"

else:

return "NO"

5.2 Is Recognized (3 points)

Transfer RNA (tRNA) are small RNA sequences, involved in the association of codons with their
associated amino acids, acting during the transcription of RNA sequences into proteins. tRNAs
can bind on one end to an amino acid molecule and on the other end exhibit a triplet of bases
complementary to the codon corresponding to the amino acid on the other side. Some tRNAs
exhibit a 6th type of base called isosine that can form the following wobble pairings:

Base Pairs with
I A
I C
I U

This is an efficient way of implementing the redundancy observed in the genetic code.

Write the function is_recognized(trna: str, rna: str) -> str that given the triplet
(string of size 3) of bases trna from the alphabet AUGCI exhibited from a tRNA molecule and
the triplet of bases rna from the alphabet AUCG, returns True if trna recognizes rna, that is all
three bases from the tRNA can pair (both Watson-Crick and wobble) to the corresponding bases
on the RNA, and False otherwise.

Example

7 / 10

Homework: Python-2
2016 - 2017

>>> is_recognized("AUG", "UAC")

True

>>> is_recognized("AUG", "UUC")

False

>>> is_recognized("IAI", "AUU")

True

>>> is_recognized("IAI", "ACA")

False

Correction:

def is_recognized(trna, rna):

reco = {"A": "UI", "U": "AI", "C": "GI", "G": "C"}

res = True

i = 0

while i < len(rna) and res == True:

tmp = False

for b in reco[rna[i]]:

if b == trna[i]:

tmp = True

res = tmp

i = i + 1

return res

5.3 Recognized Bases (4 points)

This question is based on the descriptions of the mechanisms presented on the previous question.

Write the function recognizes(trna: str) -> list that given the triplet (string of size 3)
of bases trna from the alphabet AUGCI exhibited by a tRNA molecule, returns the list of RNA
triplets (string of size 3) from the alphabet AUCG that are recognized by trna.

Example

>>> recognizes("AUG")

[’UAU’, ’UAC’, ’UGU’, ’UGC’]

>>> recognizes("IAU")

[’AUA’, ’AUG’, ’UUA’, ’UUG’, ’CUA’, ’CUG’]

>>> recognizes("IAI")

["AUA", "UUA", "CUA", "AUU", "UUU", "CUU", "AUC", "UUC", "CUC"]

Correction:

def recognizes(trna):

reco = {"U": "AG", "A": "U", "G": "UC", "C": "G", "I": "AUC"}

8 / 10

Homework: Python-2
2016 - 2017

res = [""]

for b in trna:

new_res = []

for r in res:

for c in reco[b]:

new_res.append(r + c)

res = new_res

return res

6 Distance Between Nucleic Sequences

File: distance.py

6.1 Hamming Distance Between Multiple Sequences (4 points)

The Hamming distance (that we studied in lab4) between the sequences s1 and s2 is defined as
follows:

hamming(s1, s2) =

N∑
i=0

1s1[i],s2[i]

where:

• N is the length of the sequences;

• 1n1,n2 =

{
1 if n1 6= n2

0 otherwise
is a function that evaluates to 1 if n1 and n2 are different and 0

otherwise.

This formulation can be extended to define the distance between n sequences s1, . . . , sn of the
same size N as follows:

hamming(s1, . . . , sn) =

N∑
i=0

 n∏
k=1,l=2,k 6=l

1sk[i],sl[i]


Meaning that the distance between the ensemble of sequence is +1 each time there is at least

differing character in a column.

Write the function hamming_multiple(seqs: list) -> int that given a list seqs of se-
quences of identical size, returns their associated hamming distance.

Example

• Consider the following sequences:

x1 AAAAAA

x2 AAAAAA

x3 AAAAAA

>>> hamming_multiple(["AAAAAA", "AAAAAA", "AAAAAA"])

0

9 / 10

Homework: Python-2
2016 - 2017

• Consider the following sequences:

x1 AAAAAA

x2 AAAAAA

x3 AAAAAC

>>> hamming_multiple(["AAAAAA", "AAAAAA", "AAAAAC"])

1

• Consider the following sequences:

x1 ATTAGC

x2 ATTACC

x3 ATTACG

x4 TTTAGG

>>> ss = ["ATTAGC", "ATTACC", "ATTACG", "TTTAGG"]

>>> hamming_multiple(ss)

3

Correction:

def hamming_multiple(seqs):

res = 0

for i in range(len(seqs[0])):

d = 0

for k in range(len(seqs)):

if seqs[k][i] != seqs[0][i]:

d = 1

res = res + d

return res

10 / 10

	Introduction
	File Architecture
	Submission
	Cheating

	Example
	Question
	Answer
	Testing your code

	Introduction
	Base Counting
	Bases And Distance (4 points)
	Example

	Count Codons (3 points)
	Example

	Base Pairing
	Pairing Types For RNA Sequences (2 points)
	Example

	Is Recognized (3 points)
	Example

	Recognized Bases (4 points)
	Example

	Distance Between Nucleic Sequences
	Hamming Distance Between Multiple Sequences (4 points)
	Example

