Lab 6
Sorting

Sup’Biotech 3
Python

Pierre Parutto

November 23, 2016

SUP

biotech

v
-3
<
o

l§ott£cli Lab 6: Sorting

Document Property

Authors Pierre Parutto
Version 1.0
Number of pages 11

Contact

Contact the assistant team at: supbiotech-bioinfo-bt30@googlegroups.com

Copyright

The use of this document is strictly reserved to the students from the Sup’Biotech school. This
document must have been downloaded from www.intranet.supbiotech.fr, if this is not the case
please contact the author(s) at the address given above.

(©Assistants Sup’Biotech 2016.

1 /11

supbiotech-bioinfo-bt3@googlegroups.com
www.intranet.supbiotech.fr

SUP Lab 6: Sorting

gblotech 2015 - 2016
Contents

1 Introduction 3

2 Algorithms For Sorting 3

2.1 Insertion Sort e 3

Example oL 3

2.2 Selection Sort e e e e 4

Example o o e 4

2.3 Bubble Sort 4

Example oL 4

2.4 Quick Sorto 5

Example oL)

3 Finding An Element in A List 6

3.1 Finding An Element In An Unordered List 6

Example o e e 6

3.2 Finding An Element In An Ordered List 6

Example o e e 6

3.3 Bissection Search Algorithm L L 7

Example oL 7

4 Binary Search Trees 8

4.1 BST Insertion e 9

Example oL 9

4.2 BST Creation 0 i e e e e 9

Example oL 9

QUESLIONS o e e e e e e 10

4.3 BST Creation Balanced 10

Example oL 10

4.4 BST Search e 11

Example o e e 11

2 /11

SUP Lab 6: Sorting

biotech

PARIS

In this lab we will investigate different algorithms to sort values in a list. We will restrict ourselves
to lists containing only integers but all the presented algorithms also work on any data type for

which comparison is defined.

First we are going to study algorithms for sorting an already existing list.

The insertion sort is the most straightforward sorting algorithm: given a list, it traverses the list,

inserting at each turn the minimal element in a new list.

This algorithm does not modify the input list.
1. Formalize the problem: Write the steps to perform (pseudo-code)

2. Write the function insertion_sort(l: list) -> list

Example

insertion_sort([8, 6, 3, 5, 4, 1, -5])
[-5, 1, 3, 4, 5, 6, 8]

Correction:

def insertion_sort(l):
if len(l) <= 1:

return 1

res = []

done = []

for i in range(len(1l)):
done . append ()

for i in range(len(1)):

cur_min = 999

pos_min = -1

for j in range(len(l)):

if donel[j] ==

cur_min = 1[j]
pos_min = j

done [pos_min] =

res.append (1 [pos_min])

return res

and 1[j] < cur_min:

3 /11

IoSioLtgc!i Lab 6: Sorting

PARIS

The selection sort algorithm is very similar to the insertion sort but instead of creating a new list
we are going to swap elements. The pseudo-code is the following:

input list: 1

for 1 =1 .. len(1)
find the position k of the minimal element of 1[i+1:]
swap 1[i] and 1[k]

return 1

Write the function selection_sort(l: list) -> list that implements the previous pseudo
code.

Example

selection_sort([8, 6, 3, 5, 4, 1, -5])
[-5, 1, 3, 4, 5, 6, 8]

Correction:

def selection_sort(l):
for i in range(len(1l)-1):
min_p = i
min_v = 1[i]

for k in range(i+1l, len(1)):
if 1[k] < min_v:
min_p = k
min_v = 1[k]

tmp = 1[min_p]
1[min_p] = 1[i]
1[i] = tmp

return 1

The bubble sort algorithm swaps two adjacent elements if the element on the right is smaller than
the one on the left.

1. Formalize the problem: Write the steps to perform (pseudo-code)

2. Write the function bubble_sort(1l: list) -> list

Example

bubble_sort([8, 6, 3, 5, 4, 1, -5])
[_5’ 1, 31 4, 5: 6’ 8]

4 /11

IoSioLtchi Lab 6: Sorting

PARIS

Correction:

def bubble_sort(l):
done =
n = len(l)
while not done:
done =
for i in range(1l, n):
if 1[i-1] > 1[i]:

tmp = 1[i-1]
1[i-1] = 1[i]
1[i] = tmp
done =

n=n-1
return 1

The quick sort algorithm recursively sort the list. Its pseudo-code is the following:

input list: 1

quick_sort(1):
if len(1l) == 1:
return 1[0]
choose a pivot element at position p = len(l) / 2
create the list sub containing only elements less or equal than 1([p]
create the list sup containing only elements greater than 1[p]
return the merged list: quick_sort(sub) + 1l[p] + quick_sort(sup)

Write the function quick_sort(1l: list) -> list that implements the previous pseudo-code.

Example

quick_sort([8, 6, 3, 5, 4, 1, -5])
(-5, 1, 3, 4, 5, 6, 8]

Correction:

def quick_sort(l):
if len(l) == 0:
return []
if len(l) ==
return [1[0]]

p = len(1) // 2

left = []

right = []

for k in range(len(1l)):

5 /11

bSUli Lab 6: Sorting
iotec 2015 - 2016

PARIS

if k != p and 1[k] < 1[p]l:
left.append(1[k])
elif k != p:
right.append(1[k])
return quick_sort(left) + [1[p]l] + quick_sort(right)

3 Finding An Element in A List

The interest of sorting is to be able to quickly find elements in a list.

3.1 Finding An Element In An Unordered List

In an unordered list, you can stop searching as soon as you have found the element but have to
go through the whole list if it does not appear.

Write the function find_elt_unordered(l: list, e: int) -> bool that returns if the
integer e appears in the list 1 and otherwise.
Example

>>> find_elt_unordered([8, 6, 3, 5, 4, 1, -5], 4)

>>> find_elt_unordered([8, 6, 3, 5, 4, 1, -5], 0)

Correction:

def find_elt_unordered(l, e):
for ee in 1:
if ee ==
return
return

3.2 Finding An Element In An Ordered List

In an ordered list you can stop searching as soon as you have found the element or when the
current element is greater that the one you are searching.

Write the function find_elt_ordered(1l: 1list, e: int) -> bool that returns if the
integer e appears in the list 1 and otherwise.
Example

>>> find_elt_ordered([-5, 1, 3, 4, 5, 6, 8], 4)

>>> find_elt_ordered([-5, 1, 3, 4, 5, 6, 8], 0)

6 /11

IoSioLtgc!i Lab 6: Sorting

PARIS

find_elt_ordered([-5, 1, 3, 4, 5, 6, 8], 8)

find_elt_ordered([-5, 1, 3, 4, 5, 6, 8], 9)

Correction:

def find_elt_ordered(l, e):
for ee in 1:
if ee ==
return
if ee > e:
return
return

The bissection search algorithm is a clever way to search in ordered list. It is somehow similar to

the quick_sort algorithm. Given a list 1 and an integer e, it compares e with the value at the

middle of the list, if they are equal it returns true, if e < the middle element then it is recursively

search in the first half of the list, otherwise on the second half. If the list is empty it returns
. Its pseudo-code is the following:

input list: 1
input integer: e

bissection_search(l, e)
if 1 is empty
return False
p = len(1/2)
if e == 1[p]
return True
else if e < 1[p]
return bissection_search(1[:p], e)
else
return bissection_search(1[p+1,:], e)

Write the function bissection_search(l: list, e: int) -> bool that implements the pre-
vious pseudo-code.

Example

bissection_search([-5, 1, 3, 4, 5, 6, 8], 4)
bissection_search([-5, 1, 3, 4, 5, 6, 8], 0)
bissection_search([-5, 1, 3, 4, 5, 6, 8], 8)

bissection_search([-5, 1, 3, 4, 5, 6, 8], 9)

7 /11

l§ott£cli Lab 6: Sorting

PARIS

bissection_search([-5, 1, 3, 4, 5, 6, 8], -5)

bissection_search([-5, 1, 3, 4, 5, 6, 8], -12)

Correction:

def bissection_search(l, e):
if 1 == []:
return
if len(l) == 1:
return e == 1[0]

p = len(1) // 2
if e == 1[p]:
return
if e < 1[pl:
return bissection_search(1[:p], e)
else:
return bissection_search(1l[p+1:], e)

A Binary Search Tree (BST) is a data structure that keeps the list of elements sorted. It allows
to to quickly find an element in a list.

A BST is a branching data structure where each element possesses exactly two successors and
one predecessor. The first successor is itself a BST and thus this data structure is well suited for
recursive implementation.

In a BST, we call an element a node, its first successor its left son and the second its right son.
A node that has its two successors empty is called a leaf and represented at the bottom of the
tree. On the opposite, the node without a predecessor is called the root and is the first element
of the structure.

In a BST, for any node, all the elements on its left son must be less than it and all the elements
of its right son must be greater than it. Hence the root contains the middle element.

In Python We represent a node as a list of three elements: [left son, value, right son]
where value is the value associated to the node. An empty tree is represented by the empty list: [].

Example The list: [1,2,5,7,-5] is represented by the following BST:

cea, -5, 01, 2, i, 1, 01, s, i, 7, [11]

8 /11

IoSioltJec!i Lab 6: Sorting

4.1 BST Insertion

To insert a new value into an existing BST, you have to find the place where it should be and at
a new node at this position.

Write the function BST_insert(t: list, e: int) -> list that inserts the integer e in the
BST t.

Example

>>> BST_insert([[[[], -5, (11, 2, [0J, 1, (111, 5, C0), 7, (111, &)
ceead, -8, 011, 2, 001, 1, 0111, 5, CCO3, 6, (11, 7, (111

>>> BST_insert([[[], 3, [11, 4, [[J, 5, [11], 1)

ccea, 1, 01, 38, 11, 4, [0, 5, (111

Correction:

def BST_insert(t, e):
if t == []:
return [[], e, []]
if e < t[1]:
return([BST_insert(t[0], e), t[1], t[2]1)
if e > t[1]:
return([t[0], t[1], BST_insert(t[2], e)])

4.2 BST Creation

Given a list of integer, it is possible to create the corresponding BST by starting with an empty
BST and inserting in it one by one the elements from the list.

Write the function BST_create(1l: list) -> list that returns the BST corresponding to the
list 1.

Example

>>> BST_create([-5, 1, 2, 7, 5])
ra, -5, 1, 1, @, 2, Lo, 5, 01, 7, 11111
>>> BST_create([2, 7, -1, 5, -5])
cceoy, -5, 011, -1, 011, 2, (cd, 5, 011, 7, 0011

Correction:

def BST_create(l):
BST = []
for e in 1:
BST = BST_insert(BST, e)
return BST

9 /11

IoSioLtchi Lab 6: Sorting

Questions

e On what depends the created tree?
e What is bst_create([-5, 1, 2, 5, 71)?

e What is the problem with this creation method?

Correction:

1. It depends on the order in which the elements are inserted. Basically, the first element
inserted in the tree will be the root. If this element is extreme compared to the other values
of the list, it will create an unbalanced tree.

e, -5, i, 1, i, 2, 0, s, O, 7, [11111]

3. Look at the previous tree, it is a list !! Hence we may loose all the benefits of using BSTs
over lists if we are not careful about the shape of the tree. This means that we have to insert
the elements in a specific order.

We call level of a tree the number of layers it possesses. The balanced BST is the BST possessing
the least number of layers possible created from a list.

The balanced BST tree can be easily created from an ordered list through the following recur-
sive procedure: If the list is of size 1 just return a leaf node, otherwise create a node possessing
the value of the element at the middle of the list and create its left son through a recursive call
on the first half of the list and the right son through a recursive call on the second half of the list.
This is very similar to the bissection search though process.

Write the algorithm BST_create_balanced(l: list) -> list that implements this algo-
rithm

Example

BST_create_balanced([-5, 1, 2, 5, 7])

cccey, -5, 011, 1, 11, 2, CCOd, 5, 01, 7, (111
BST_create_balanced([-5, 1, 3, 4, 5, 6, 8])

ccca, -5, 011, 1, CO3, 3, 0111, 4, (L@, s, 011, 6, C0J, 8, [111]

Correction:

def BST_create_balanced(1):
if 1 ==[]:
return []
p = len(l) // 2
return [BST_create_balanced(1l[:p]), 1[p], BST_create_balanced(1l[p+1:])]

10 /11

IoSioltJec!i Lab 6: Sorting

4.4 BST Search

To search in a BST, you have to compare the value to be searched with the different nodes until
you reach the value or a leaf and starting at the root of the BST. When an empty node is reached
it returns , if the query value is the same as the node value it returns . On the other
hand, if the query value is less than the node value you have to search it in the left son and on
the right son if it is greater.

Write the function BST_search(t: list, e: int) -> list) that returns if the integer
1 is in the BST t and otherwise.
Example

>>> BST_search([[[[], -5, [11, 1, [[), 3, [111, 4, CC0), 5, (11, 6, C[1, 8, (1111, ©

>>> BST_search([[[[], -5, (11, 1, [0, 3, (111, 4, (L0, 5, (11, 6, [[1, 8, [1111, 2)
>>> BST_search([[[[], -5, (11, 1, (0], 8, (111, 4, (L0, 5, (11, 6, [[1, 8, (1111, 8&)
>>> BST_search([[[[], -5, [11, 1, [[J, 38, [111, 4, CC0(J, 5, (11, 6, [0, &, (1111, -5
>>> BST_search([[[[], -5, [11, 1, [0, 3, [111, 4, CC0), 5, (11, 6, [, 8, (1111, 10)
>>> BST_search([[[[], -5, [11, 1, [[1, 3, [111, 4, [C0), 5, (11, 6, [0, 8, (1111, -123)

>>> BST_search([[[], 3, [11, 4, [(J, 5, (111, &

>>> BST_search([[[], 3, [11, 4, [[1, 5, [111, 4)

Correction:

def BST_search(t, e):
if t == [1:
return
if e == t[1]:
return
if e < t[1]:
return BST_search(t[0], e)
if e > t[1]:
return BST_search(t[2], e)

11 /11

	Introduction
	Algorithms For Sorting
	Insertion Sort
	Example

	Selection Sort
	Example

	Bubble Sort
	Example

	Quick Sort
	Example

	Finding An Element in A List
	Finding An Element In An Unordered List
	Example

	Finding An Element In An Ordered List
	Example

	Bissection Search Algorithm
	Example

	Binary Search Trees
	BST Insertion
	Example

	BST Creation
	Example
	Questions

	BST Creation Balanced
	Example

	BST Search
	Example

