
Stack Applications
last updated 2/16/07

Screen Mode

Three applications of stacks are presented here. These examples are central to
many activities that a computer must do and deserve time spent with them.

Expression evaluation1.
Backtracking (game playing, finding paths, exhaustive searching)2.
Memory management, run-time environment for nested language features.3.

Expression evaluation

In particular we will consider arithmetic expressions. Understand that there are
boolean and logical expressions that can be evaluated in the same way. Control
structures can also be treated similarly in a compiler.

This study of arithmetic expression evaluation is an example of problem solving
where you solve a simpler problem and then transform the actual problem to
the simpler one.

Aside: The NP-Complete problem. There are a set of apparently intractable
problems: finding the shortest route in a graph (Traveling Salesman Problem), bin
packing, linear programming, etc. that are similar enough that if a polynomial
solution is ever found (exponential solutions abound) for one of these problems,
then the solution can be applied to all problems.

Infix, Prefix and Postfix Notation

Stack Applications http://jcsites.juniata.edu/faculty/kruse/cs240/stackapps.htm

1 de 6 29/01/15 00:08

We are accustomed to write arithmetic expressions with the operation between
the two operands: a+b or c/d. If we write a+b*c, however, we have to apply
precedence rules to avoid the ambiguous evaluation (add first or multiply first?).

There's no real reason to put the operation between the variables or values.
They can just as well precede or follow the operands. You should note the
advantage of prefix and postfix: the need for precedence rules and parentheses
are eliminated.

Infix Prefix Postfix

a + b + a b a b +

a + b * c + a * b c a b c * +

(a + b) * (c - d) * + a b - c d a b + c d - *

b * b - 4 * a * c

40 - 3 * 5 + 1

Postfix expressions are easily evaluated with the aid of a stack.

Postfix Evaluation Algorithm

Assume we have a string of operands and operators, an informal, by hand
process is

Scan the expression left to right1.
Skip values or variables (operands)2.
When an operator is found, apply the operation to the preceding two
operands

3.

Replace the two operands and operator with the calculated value (three
symbols are replaced with one operand)

4.

Continue scanning until only a value remains--the result of the expression5.

The time complexity is O(n) because each operand is scanned once, and each
operation is performed once.

A more formal algorithm:

create a new stack
while(input stream is not empty){
 token = getNextToken();
 if(token instanceof operand){
 push(token);

Stack Applications http://jcsites.juniata.edu/faculty/kruse/cs240/stackapps.htm

2 de 6 29/01/15 00:08

 } else if (token instance of operator)
 op2 = pop();
 op1 = pop();
 result = calc(token, op1, op2);
 push(result);
 }
}
return pop();

Demonstration with 2 3 4 + * 5 -

Infix transformation to Postfix

This process uses a stack as well. We have to hold information that's expressed
inside parentheses while scanning to find the closing ')'. We also have to hold
information on operations that are of lower precedence on the stack. The
algorithm is:

Create an empty stack and an empty postfix output string/stream1.
Scan the infix input string/stream left to right2.
If the current input token is an operand, simply append it to the output
string (note the examples above that the operands remain in the same
order)

3.

If the current input token is an operator, pop off all operators that have
equal or higher precedence and append them to the output string; push the
operator onto the stack. The order of popping is the order in the output.

4.

If the current input token is '(', push it onto the stack5.
If the current input token is ')', pop off all operators and append them to the
output string until a '(' is popped; discard the '('.

6.

If the end of the input string is found, pop all operators and append them to
the output string.

7.

This algorithm doesn't handle errors in the input, although careful analysis of
parenthesis or lack of parenthesis could point to such error determination.

Apply the algorithm to the above expressions.

Stack Applications http://jcsites.juniata.edu/faculty/kruse/cs240/stackapps.htm

3 de 6 29/01/15 00:08

Backtracking

Backtracking is used in algorithms in which there are steps along some path
(state) from some starting point to some goal.

Find your way through a maze.
Find a path from one point in a graph (roadmap) to another point.
Play a game in which there are moves to be made (checkers, chess).

In all of these cases, there are choices to be made among a number of options.
We need some way to remember these decision points in case we want/need to
come back and try the alternative

Consider the maze. At a point where a choice is made, we may discover that the
choice leads to a dead-end. We want to retrace back to that decision point and
then try the other (next) alternative.

Again, stacks can be used as part of the solution. Recursion is another, typically
more favored, solution, which is actually implemented by a stack.

Memory Management

Any modern computer environment uses a stack as the primary memory
management model for a running program. Whether it's native code (x86, Sun,
VAX) or JVM, a stack is at the center of the run-time environment for Java, C++,
Ada, FORTRAN, etc.

The discussion of JVM in the text is consistent with NT, Solaris, VMS, Unix runtime
environments.

Each program that is running in a computer system has its own memory
allocation containing the typical layout as shown below.

Stack Applications http://jcsites.juniata.edu/faculty/kruse/cs240/stackapps.htm

4 de 6 29/01/15 00:08

Call and return process

When a method/function is called

An activation record is created; its size depends on the number and size of
the local variables and parameters.

1.

The Base Pointer value is saved in the special location reserved for it2.
The Program Counter value is saved in the Return Address location3.
The Base Pointer is now reset to the new base (top of the call stack prior to
the creation of the AR)

4.

The Program Counter is set to the location of the first bytecode of the
method being called

5.

Copies the calling parameters into the Parameter region6.

Stack Applications http://jcsites.juniata.edu/faculty/kruse/cs240/stackapps.htm

5 de 6 29/01/15 00:08

Initializes local variables in the local variable region7.

While the method executes, the local variables and parameters are simply found
by adding a constant associated with each variable/parameter to the Base
Pointer.

When a method returns

Get the program counter from the activation record and replace what's in
the PC

1.

Get the base pointer value from the AR and replace what's in the BP2.
Pop the AR entirely from the stack.3.

Stack Applications http://jcsites.juniata.edu/faculty/kruse/cs240/stackapps.htm

6 de 6 29/01/15 00:08

