

CÁLCULO NUMÉRICO I

Grado en CC. Matemáticas Doble Grado en Ingeniería Informática y Matemáticas 2013-2014

Ejercicios 10 a 14

10. [A] Calcular el polinomio $P_n(x)$ de Taylor en $x_0=0$, de grado $\leq 3n+2$, de la función

$$f(x) = \frac{1}{x} \int_0^x \frac{1}{1+t^3} dt$$
 de los $x > -1$.

Estudiar el límite, para cada x fijo, de

$$f(x) - P_n(x)$$

cuando $n \to \infty$.

11. [A] Calcular el polinomio $P_n(x)$ de Taylor en $x_0=0$, de grado $\leq 2n$, de la función

$$f(x) = \frac{1}{x} \int_0^x \frac{\sin t}{t} dt.$$

Estudiar el límite, para cada x fijo, de

$$f(x) - P_n(x)$$

cuando $n \to \infty$.

12. [SS] Dada la función

$$f(x) = x^3 \sqrt{|x|} \,.$$

calcular los posibles polinomios $P_n(x)$ de Taylor de grado $\leq n$ en $x_0 = 0$. Para cada uno de ellos comprobar que

$$\lim_{x \to 0} \frac{f(x) - P_n(x)}{x - 0} = 0$$

13. Sean 0 < a < b. Considérese la aproximación

(2)
$$\sqrt{a} + \frac{b}{2\sqrt{a}}$$
 del valor de $\sqrt{a+b}$.

Comprobar que (2) es la aproximación obtenida utilizando el polinomio de TAYLOR de grado 1 de la función \sqrt{x} en $x_0 = a$, evaluado en a+b. Demostrar que (2) es una aproximación por exceso. Estimar el error absoluto y el error relativo que comete esta aproximación.

14. [SS]

A. Escribir el polinomio

$$P(x) = 1 + x + \frac{1}{2}x^2 + \frac{1}{6}x^3$$

en potencias de x-1.

B. Escribir el polinomio

$$P(x) = 1 - 2(x - 1) + 3(x - 1)^{2} + \frac{1}{2}(x - 1)^{3}$$

en potencias de x-2.

and del polinor

and the polinor

and th C. Utilizar el algoritmo de HORNER para calcular el valor del polinomio

$$P(x) = -12 - x^2 - 4x^3 + x^4 + x^5$$

en $x_0 = \pm 1, \pm 2, \pm 3, \pm 4, \pm 6, \pm 12$.

