Universidad	Biomedical Engineering
Rey Juan Carlos	Course 2020-2021

Physics

Problem Sheet 5
Dynamics of systems of particles

1. Two bodies, masses 500 and 1000 kg , move at the same speed, $180 \mathrm{~km} / \mathrm{h}$. Determine their respective velocities after a frontal, inelastic collision Ans: $60 \mathrm{~km} / \mathrm{h}$
2. An artillery shell is fired forming an angle of 45°, initial speed $30 \mathrm{~m} / \mathrm{s}$. It explodes into two equal-mass fragments in the highest point of its trajectory. The first fragment continues in the direction of motion at velocity of $45 \mathrm{~m} / \mathrm{s}$. Determine what is the distance from firing point reached by the second fragment.
Ans: $40,35 \mathrm{~m}$ from firing point
3. A body of mass m is on a horizontal plane at rest. Another body collides elastically with it at velocity V and it deviates an angle α. Calculate the velocities of both bodies after collision. Ans: $\left|\overrightarrow{v_{i}}\right|=V \cdot \cos \alpha$ with angle α; $\left|\vec{v}_{2}\right|=V \cdot \operatorname{sen} \alpha$ with angle $-\left(90^{\circ}-\alpha\right)$
4. The simple pendulum of the figure has a mass $\mathrm{m}_{1}=20 \mathrm{~kg}$, and it is tied to a rope of length $1,5 \mathrm{~m}$. We leave this mass to fall down from position A. When it reaches position B , it collides elastically with other mass $\mathrm{m}_{2}=25 \mathrm{~kg}$, initially at rest, no friction. Because of the collision, m_{1} bounces back and reaches point C, at height h. Determine: a) Velocity of m_{1} at point B before collision, and the tension of the rope at that precise instant. b) Velocities of m_{1} and m_{2} after collision. c) Kinetic energy Ek lost by m_{1} during collision. d) Height h.

Ans: a) $\left.\mathrm{v}=5,42 \mathrm{~m} / \mathrm{s} ; \mathrm{T}=588 \mathrm{~N} ; \mathrm{b}) \mathrm{v}_{1}=-0,60 \mathrm{~m} / \mathrm{s} ; \mathrm{v}_{2}=4,82 \mathrm{~m} / \mathrm{s} ; \mathrm{c}\right) \Delta \mathrm{Ek}=-290,2 \mathrm{~J}$; $\mathrm{h}=18,5 \mathrm{~mm}$.
5. Consider a pulley with mass 10 kg and radius 10 cm . Two masses, $\mathrm{m}_{1}=13 \mathrm{~kg}$ and $\mathrm{m}_{2}=7 \mathrm{~kg}$, hang from an inextensible and weightless rope. Both masses at rest. Let $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$ and the Moment of Inertia of the pulley $1 / 2 \mathrm{MR}^{2}$. Determine: a) Linear acceleration of the bodies and angular acceleration of the pulley; b) Kinetic energy of each body and the pulley after 2 secs. Ans.: a) $2,4 \mathrm{~m} / \mathrm{s}^{2}, 24 \mathrm{rad} / \mathrm{s}^{2}$; b) $149,76 \mathrm{~J}, 80,64 \mathrm{~J}, 9,22 \mathrm{~J}$
6. The figure shows two identical doors seen from above. The same force F acts on the doors. The door A rotates around an axis located in its leftmost edge. The door B rotates around an axis located in its middle point. The door A rotates a given angle after 3 secs (initially at rest). How much time takes the door B to rotate the same angle? $\mathrm{I}_{\mathrm{A}}=(1 / 3) M l^{2}, \mathrm{I}_{\mathrm{B}}=(1 / 12) M l^{2}$. Ans.: $2,12 \mathrm{~s}$

7. A cylinder $\left(I=1 / 2 \cdot m \cdot R^{2}\right)$ rolls over a horizontal surface at speed v. Determinise the work needed for stopping it Ans.: $3 / 4 \mathrm{mv}^{2}$.
8. A solid sphere radius R and a solid cube are on top of a ramp, height H. The sphere rolls without slipping, the cube slides with no friction. The moment of inertia of the sphere is $I=2 / 5 \cdot M \cdot R^{2}$.
a) Calculate the velocities of the bodies when reaching the zero-level height. b) Determine which body arrives the first to the base of the ramp.
Ans: vsphere $=\operatorname{sqrt}(10 g H / 7)$; $v_{\text {cube }}=\operatorname{sqrt}(2 g H)$ b) The cube arrives the first.
9. A person (mass 91 kg) jumps into a moving boat (mass 510 kg) with another person already on board (mass

