C.6 Continuity 229

C.6 Continuity

Problem 6.1

(a) The function g(x) = |x| is a continuous function and $|f(x)| = (g \circ f)(x)$ is continuous because the composition of continuous functions is a continuous function. As for the reciprocal, take

$$f(x) = \begin{cases} 1, & x \geqslant 0, \\ -1, & x < 0. \end{cases}$$

It is clearly a discontinuous function, however |f(x)| = 1 everywhere, which is continuous. This example illustrates that from the fact that |f(x)| is continuous one cannot conclude that f(x) itself is continuous.

(b) We are talking here about a function $f : \mathbb{R} \mapsto \mathbb{Q}$ that is continuous. One such function would necessarily be constant. Let us see why. Suppose that $f(x_1) = q_1$ and $f(x_2) = q_2 \neq q_1$. Since the function is continuous it must take all intermediate values between q_1 and q_2 within the interval $[x_1, x_2]$. But between any two rational numbers there are infinitely many irrational numbers, so there must exist $x \in (x_1, x_2)$ such that f(x) is irrational. This is a contradiction and therefore $q_2 \neq q_1$ is not possible.

Problem 6.2

(a) The information that the function is surjective means that x_0 and x_1 in [0,1] such that $f(x_0) = 0$ and $f(x_1) = 1$. Now, consider the interval $[x_0, x_1]$ (or $[x_1, x_0]$, depending on which one is bigger). The function g(x) = f(x) - x is continuous (the sum of two continuous functions) and satisfies

$$g(x_0) = -x_0,$$
 $g(x_1) = 1 - x_1.$

If $x_0 = 0$ then c = 0 is the point we are looking for. If $x_1 = 1$ then c = 1 is that point. If none of these two things happen then $g(x_0) < 0$ and $g(x_1) > 0$ and we can apply Bolzano's theorem: there must exist $c \in (0,1)$ such that g(c) = 0 —which is equivalent to f(c) = c. Whichever the case, we can conclude that there exists $c \in [0,1]$ such that f(c) = c.

(b) Consider the number

$$\mu = \frac{1}{n} \sum_{k=1}^{n} f(x_k).$$

We can obtain a lower bound to μ by replacing in this expression all the $f(x_k)$ by the smallest one. Thus,

$$\mu \geqslant \min_{k=1,\ldots,n} f(x_k).$$

I ilrawing we can obtain an unpar hound replacing them by the largest one

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

(a) In this case the denominator must never vanish. If $\lambda = 0$ the function f(x) = 1 and trivially continuous in \mathbb{R} . Consider now $\lambda \neq 0$. Since in this case the denominator is a quadratic polinomial, the requirement that it never vanishes can be rephrase as its two roots being complex. The condition for that is that the discriminant is negative, so

$$4\lambda^2 - 4\lambda < 0 \quad \Leftrightarrow \quad \lambda(\lambda - 1) < 0.$$

This holds if each factor has a different sign, i.e., if $0 < \lambda < 1$. Therefore the function is continuous in \mathbb{R} provided $\lambda \in [0,1)$.

(b) Any of the values of λ found in the previous item make the function continuous in \mathbb{R} —hence also in [0,1]—, so we just have to check what happens if $\lambda < 0$ or if $\lambda \geqslant 1$. In any of these two cases the denominator will have two real roots, so the key point is that none of them lies within the interval [0,1] where we want f(x) to be continuous.

By solving the quadratic equation we find the two roots as

$$x_1 = \frac{\lambda + \sqrt{\lambda(\lambda - 1)}}{\lambda} = 1 + \sqrt{1 - \lambda^{-1}}, \qquad x_2 = \frac{\lambda - \sqrt{\lambda(\lambda - 1)}}{\lambda} = 1 - \sqrt{1 - \lambda^{-1}}.$$

If $\lambda = 1$ both $x_1 = x_2 = 1$ and so f is not continuous at x = 1. Thus $\lambda \neq 1$ is required. In this case $x_1 > 1$, so it will always be outside the interval [0,1]. We can ignore it. On the contrary, $x_2 < 1$, so it will be also ouside the interval provided $x_2 < 0$. This condition implies $\sqrt{1 - \lambda^{-1}} > 1$, which can only hold if $\lambda < 0$.

Summarising, f(x) will be continuous in [0,1] provided $\lambda < 1$.

Problem 6.4

- (i) Numerator and denominator are continuous functions in \mathbb{R} , so this function will be continuous except when the denominator vanishes. It does when $x^2 8x + 12 = (x 6)(x 2) = 0$, so f is continuous in $\mathbb{R} \{2, 6\}$.
- (ii) The function is the sum of a plynomial (continuous in \mathbb{R}) and the function $e^{3/x}$. The exponential is continuous everywhere and the function 3/x too, except for x = 0. Besides,

$$\lim_{x \to 0^+} e^{3/x} = \infty,$$

so f is continous in $\mathbb{R} - \{0\}$.

(iii) Polynomials are continuous in \mathbb{R} and so the tangent except when its argument is an odd multiple of $\pi/2$. This means the points

$$3x+2=n\pi+\frac{\pi}{2}$$
 $\Rightarrow x=\frac{n\pi-2}{3}+\frac{\pi}{6}, n\in\mathbb{Z}.$

f is continuous except at these infinitely many points.

(iv) The polynomial is continuous in \mathbb{R} , so f is continuous wherever the argument of the square root is not negative. This means $x^2 - 5x + 6 = (x - 3)(x - 2) \ge 0$, which happens for $x \ge 3$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

(viii) The polynomial and the sine function are both continuous everywhere, and so is 1/x except at x = 0. Function f is defined at x = 0 though, so we must check the definition of continuity at this specific point. Since $|x^2 \sin(1/x)| \le x^2$ and $x^2 \to 0$ as $x \to 0$, then

$$\lim_{x\to 0} f(x) = 0 = f(0)$$

and f is continuous in \mathbb{R} .

(ix) For x > 0 the function is continuous except for $x = (2n - 1)\pi/2$, $n \in \mathbb{N}$. For x < 0 the function is always continuous. We must compute the two one-sided limits at x = 0 to check for continuity at that point. Now,

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \frac{\tan x}{\sqrt{x}} = \lim_{x \to 0^+} \frac{x}{\sqrt{x}} = \lim_{x \to 0^+} \sqrt{x} = 0.$$

And on the other side,

$$\lim_{x \to 0^{-}} e^{1/x} = \lim_{t \to -\infty} e^{t} = 0.$$

Thus,

$$\lim_{x \to 0} f(x) = 0 = f(0),$$

so f is continuous in $\mathbb{R} - \{(2n-1)\pi/2 : n \in \mathbb{N}\}.$

(x) As close as we like to a rational number there is always an irrational number. As close as we like to an irrational number there is always a rational number. So, f is discontinuous at every $x \neq 0$. At x = 0 function f(x) is continuous though. The reason is that $|f(x)| = |x| \to 0$ as $x \to 0$, so

$$\lim_{x \to 0} f(x) = 0 = f(0).$$

(xi) Each piece of this piecwise function separately is a continuous function, so we just need to check what happens at the joints. Thus,

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x - 1)^{3} = 0, \qquad \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} (|x| - x) = 0,$$

so

$$\lim_{x \to 1} f(x) = 0 = f(1).$$

And

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} (|x| - x) = 2, \qquad \lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{-}} \sin(\pi x) = 0,$$

so f(x) is continuous in $\mathbb{R} - \{-1\}$.

(vii) The two polynomials defining the function for |x| > 1 are continuous function. In (-1, 1)

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

And

$$\lim_{x \to -1^{-}} f(x) = \lim_{x \to -1^{+}} (\operatorname{sgn} x + 1) = 0, \qquad \lim_{x \to -1^{+}} f(x) = \lim_{x \to -1^{-}} (x + 1)^{2} = 0,$$

SO

$$\lim_{x \to -1} f(x) = 0 = f(-1).$$

Summarising, f(x) is continuous in $\mathbb{R} - \{0\}$.

(xiii) Each of the three pieces of this piecewise function is continuous (a polynomial or the absolute value of a polynomial), so we need to check just the joints. Thus,

$$\lim_{x \to 2^{+}} f(x) = \lim_{x \to 2^{+}} (4x - 5) = 3, \qquad \lim_{x \to 2^{-}} f(x) = \lim_{x \to 2^{-}} |x^{2} - 1| = 3,$$

so

$$\lim_{x \to 2} f(x) = 3 = f(2).$$

And

$$\lim_{x \to -2^{-}} f(x) = \lim_{x \to -2^{+}} |x^{2} - 1| = 3, \qquad \lim_{x \to -2^{+}} f(x) = \lim_{x \to -2^{-}} x^{2} = 4,$$

so f(x) is continuous in $\mathbb{R} - \{-2\}$.

(xiv) The functions defining f(x) for |x| > 1 are both polynomials —hence continuous. Within $|x| \le 1$ it is defined as $g(x) = x - \lfloor x \rfloor$. Now, g(x) = x + 1 for all $-1 \le x < 0$, g(x) = x for all $0 \le x < 1$, and g(1) = 0. Thus function f(x) can be redefined as

$$f(x) = \begin{cases} (x-1)^2, & x \ge 1, \\ x, & 0 \le x < 1, \\ x+1, & x < 0. \end{cases}$$

All three pieces are continuous (polynomials), so we must look at the joints. So,

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{+}} (x - 1)^{2} = 0, \qquad \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} x = 1,$$

and

$$\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} x = 0, \qquad \lim_{x \to 0^-} f(x) = \lim_{x \to 0^-} (x+1) = 1.$$

Therefore the f(x) is continuous in $\mathbb{R} - \{0, 1\}$.

Problem 6.5

(i) Denoting $f(x) = x^2 - 18x + 2$, a continuous function in \mathbb{R} , we have f(-1) = 21, f(1) = -15, so Bolzano's theorem guarantees at least one zero in [-1,1].

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

C.6 Continuity 233

(vi) Denoting

$$f(x) = \frac{x^3}{4} - \sin(\pi x) + 3 - \frac{7}{3} = \frac{x^3}{4} - \sin(\pi x) + \frac{2}{3},$$

f(-2)=-4/3 and f(2)=8/3, so Bolzano's theorem guarantees at least one zero in [-2,2]. (vii) Clearly $|\sin x| - \sin x \le 2$, so the equation $|\sin x| - \sin x = 3$ cannot have any solution in \mathbb{R} . Problem 6.6 If $f(x) = a_{2n+1}x^{2n+1} + a_{2n}x^{2n} + \cdots + a_{1n}x + a_{1n}x^{2n} + \cdots + a_{1n}x^{2n+1}$. Therefore the signs of f(x) for large positive x and large negative x are opposite, so we can apply Bolzano and conclude that f(x) must be zero at least at one point in \mathbb{R} .

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -