PRACTICA 3 Fecha de entrega el viernes 20 11 2020

- 1 En el espacio vectorial real R⁴ se consideran los subespacios vectoriales $W_1 = \{(x_1, x_2, x_3, x_4) \in \mathbb{R}^4 / x_1 - x_2 + x_3 + x_4 = 0, x_1 + x_2 - x_4 = 0\}$ $W_2 = \{(a-b, a+2b+3c, -2a-b-3c, a+c) \in \mathbb{R}^4 \mid a, b, c \in \mathbb{R}\}\$ Obtener una base y unas ecuaciones implicitas de W_1 , W_2 , $W_1 + W_2$ y $W_1 \cap W_2$
- **2** Se considera la base $B = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}\$ de \mathbb{R}^3 y el vector $\overrightarrow{u} = \overrightarrow{u_1} + \overrightarrow{u_2} + \overrightarrow{u_3}$.
- a)Hallar las coordenadas las codenadas de \vec{u} respecto de la nueva base $B' = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$ sabiendo que

$$\overrightarrow{u_1} = \overrightarrow{v_2} - \overrightarrow{v_3}, \qquad \overrightarrow{u_2} = \overrightarrow{v_3} - \overrightarrow{v_1}, \qquad \overrightarrow{u_3} = \overrightarrow{v_1} + \overrightarrow{v_2}$$

 $\overrightarrow{u_1} = \overrightarrow{v_2} - \overrightarrow{v_3}, \qquad \overrightarrow{u_2} = \overrightarrow{v_3} - \overrightarrow{v_1}, \qquad \overrightarrow{u_3} = \overrightarrow{v_1} + \overrightarrow{v_2}$ y hallar también las coordenadas de $\overrightarrow{v} = 3\overrightarrow{v_1} + 2\overrightarrow{v_2} + \overrightarrow{v_3}$ respecto de la base B

Sean B y B'dos bases de un espacio vectorial V_3 .

Hallar las ecuaciones del cambio de base

- a)De la base $B = \{\overrightarrow{u_1}, \overrightarrow{u_2}, \overrightarrow{u_3}\}$ a la base $B' = \{\overrightarrow{v_1}, \overrightarrow{v_2}, \overrightarrow{v_3}\}$, sabiendo que $\overrightarrow{u_1} = \overrightarrow{v_1} + \overrightarrow{v_2}, \qquad \overrightarrow{u_2} = \overrightarrow{v_2} + \overrightarrow{v_3}, \qquad \overrightarrow{u_3} = \overrightarrow{v_1} + \overrightarrow{v_3}$
- b) De la base B' a la base B
- c) Las coordenadas del vector $\vec{w} = (1,0,3)_B$ respecto de B' y las de $\overrightarrow{x} = (1,2,-1)_{B'}$ respecto de B.