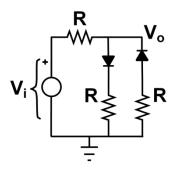
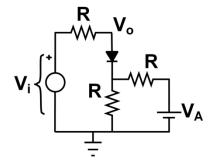

Circuitos con diodos

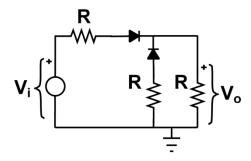

Nota: Usar la segunda aproximación para los diodos con:

- Tensión umbral de 0.7 V para los diodos
- Tensión umbral de 0.8 V para los diodos zener
- 1. Para los circuitos de la figura:
 - a. Calcular la mínima tensión V_A para la cual existe corriente en el circuito
 - b. La intensidad que circula para V_A = 10V [3 mA; 4,25mA]



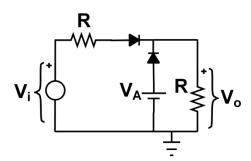
Datos: $|V_z| = 3.3 \text{ V}$, R = 2 k Ω

- 2. Para el circuito de la figura:
 - a. Calcular el voltaje de salida V_o en función del voltaje de entrada V_i



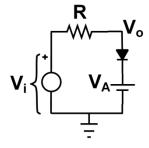
- 3. Para el circuito de la figura:
 - a. La tensión de entrada a la cual se modifica el estado del diodo [2,2 V]
 - b. Calcular el voltaje de salida V_{o} en función del voltaje de entrada V_{i}

Datos: V_A = 3 V

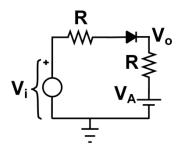

- a. Calcular el voltaje de salida Vo en función del voltaje de entrada Vi
- El voltaje de entrada límite para no superar la corriente máxima del diodo [100,7
 VI

 I_{max} = 50 mA, R = 1 k Ω

5. Para el circuito de la figura:

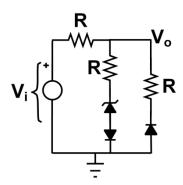

- a. Calcular el voltaje de salida V_{o} en función del voltaje de entrada V_{i}
- El voltaje de entrada límite para no superar la corriente máxima del diodo [100,7
 V]

Datos: $V_A = 2 V$, $I_{max} = 50 \text{ mA}$, $R = 1 \text{ k}\Omega$


6. Para el circuito de la figura:

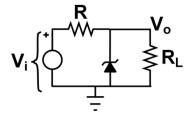
- a. La tensión de entrada a la cual se modifica el estado del diodo [4,7 V]
- b. Calcular el voltaje de salida V_o en función del voltaje de entrada V_i
- c. El voltaje de entrada límite para no superar la corriente máxima del diodo [29,7V]

Datos: $V_A = 4 V$, $I_{max} = 25 \text{ mA}$, $R = 1 \text{ k}\Omega$

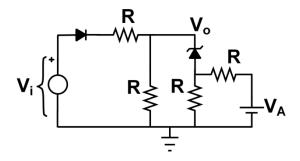

- a. La tensión de entrada a la cual se modifica el estado del diodo [6,7 V]
- b. Calcular el voltaje de salida Vo en función del voltaje de entrada Vi
- c. El voltaje de entrada límite para no superar la corriente máxima del diodo [56,7
 V]

Datos: $V_A = 6 \text{ V}$, $I_{max} = 25 \text{ mA}$, $R = 1 \text{ k}\Omega$

8. Para el circuito de la figura:

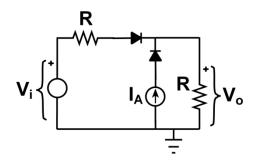

- a. Calcular el voltaje de salida Vo en función del voltaje de entrada Vi
- b. El voltaje de entrada límite para no superar la corriente máxima del diodo ni la potencia máxima del zener [168,2 V; -200,7 V]

Datos: $|V_z| = 7.5 \text{ V}$, $I_{max} = 100 \text{ mA}$, $P_{z,max} = 600 \text{ mW}$, $R = 1 \text{ k}\Omega$


9. Para el circuito de la figura:

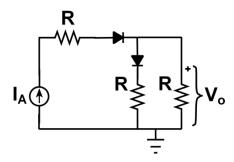
- a. Calcular el voltaje de salida Vo en función del voltaje de entrada Vi
- b. La resistencia R mínima y máxima derivada de las limitaciones del diodo zener ($I_{z,min}$ y $P_{z,max}$) para V_i =12 V [692.3 Ω ; 54.5 Ω]

Datos: $|V_z| = 7.5 \text{ V}$, $I_{z,min} = 4 \text{ mA}$, $P_{z,max} = 600 \text{ mW}$, $R_L = 3 \text{ k}\Omega$, $R = 1 \text{ k}\Omega$

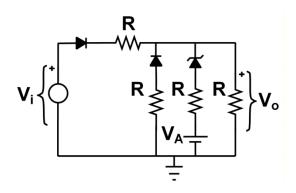

a. Calcular el voltaje de salida V_o en función del voltaje de entrada V_i para V_A = 5V y para V_A = 1V

Datos: $|V_z| = 3.3 \text{ V}$

11. Para el circuito de la figura:

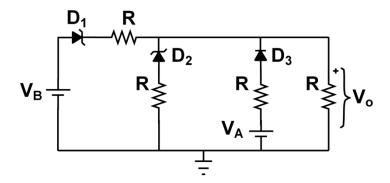

a. Calcular el voltaje de salida V_{o} en función del voltaje de entrada V_{i}

Datos: I_A = 2.5 mA, R = 1 k Ω


12. Para el circuito de la figura:

a. Calcular el voltaje de salida V_{o} [6.35 V]

Datos: I_A = 6 mA, R = 2 $k\Omega$


- a. Determinar en función de los voltajes V_i , V_A y V_o los límite entre regiones de los diodos
- b. Calcular el voltaje de salida V_0 en función del voltaje de entrada V_i para V_A = 4 V

Datos: $|V_z| = 5.6 \text{ V}$

14. Para el circuito de la figura:

- a. Determinar en función de los voltajes V_A, V_B y V_o los límite entre regiones de los diodos
- b. Calcular el voltaje de salida V_o para V_A = 4 V y V_B = 7.5 V [3.17 V]

Datos: $|V_z| = 2.7 V$