

## FICHA TÉCNICA DE LA ASIGNATURA

| Datos de la asignatura |                                                                                                      |
|------------------------|------------------------------------------------------------------------------------------------------|
| Nombre completo        | Electrotecnia                                                                                        |
| Código                 | DIE-GITI-201                                                                                         |
| Título                 | <u>Grado en Ingeniería en Tecnologías Industriales por la Universidad Pontificia</u> <u>Comillas</u> |
| Impartido en           | Grado en Ingeniería en Tecnologías Industriales [Segundo Curso]                                      |
| Nivel                  | Reglada Grado Europeo                                                                                |
| Cuatrimestre           | Anual                                                                                                |
| Créditos               | 12,0 ECTS                                                                                            |
| Carácter               | Obligatoria (Grado)                                                                                  |
| Departamento / Área    | Departamento de Ingeniería Eléctrica                                                                 |
| Responsable            | Jesús Alonso Alonso                                                                                  |
| Horario de tutorías    | Se comunicará a los alumnos el primer día de clase                                                   |

| Datos del profesorado |                                      |  |  |
|-----------------------|--------------------------------------|--|--|
| Profesor              |                                      |  |  |
| Nombre                | Jesús Alonso Alonso                  |  |  |
| Departamento / Área   | Departamento de Ingeniería Eléctrica |  |  |
| Despacho              | Alberto Aguilera 25                  |  |  |
| Correo electrónico    | j.alonso@comillas.edu                |  |  |
| Teléfono              | 2439                                 |  |  |
| Profesor              |                                      |  |  |
| Nombre                | Damien Laloux Dallemagne             |  |  |
| Departamento / Área   | Departamento de Ingeniería Eléctrica |  |  |
| Despacho              | Alberto Aguilera 25                  |  |  |
| Correo electrónico    | dlaloux@iit.comillas.edu             |  |  |
| Teléfono              | 2405                                 |  |  |
| Profesor              | Profesor                             |  |  |
| Nombre                | Enrique Picatoste Calvo              |  |  |
| Departamento / Área   | Departamento de Ingeniería Eléctrica |  |  |
| Correo electrónico    | epicatoste@icai.comillas.edu         |  |  |
| Profesor              |                                      |  |  |
| Nombre                | José María Urretavizcaya González    |  |  |



| Departamento / Área    | Departamento de Ingeniería Eléctrica |  |
|------------------------|--------------------------------------|--|
| Correo electrónico     | jmurretavizcaya@icai.comillas.edu    |  |
| Profesor               |                                      |  |
| Nombre                 | Mariano Ventosa Rodríguez            |  |
| Departamento / Área    | Departamento de Ingeniería Eléctrica |  |
| Despacho               | Alberto Aguilera 25                  |  |
| Correo electrónico     | Mariano.Ventosa@comillas.edu         |  |
| Teléfono               | 2446                                 |  |
| Profesores de laborate | orio                                 |  |
| Profesor               |                                      |  |
| Nombre                 | María Teresa Sánchez Carazo          |  |
| Departamento / Área    | Departamento de Ingeniería Eléctrica |  |
| Despacho               | Alberto Aguilera 25 [D-124]          |  |
| Correo electrónico     | tsanchez@icai.comillas.edu           |  |
| Teléfono               | 2401                                 |  |
| Profesor               |                                      |  |
| Nombre                 | Alberto García Ramos                 |  |
| Departamento / Área    | Departamento de Ingeniería Eléctrica |  |
| Correo electrónico     | agramos@icai.comillas.edu            |  |
| Profesor               |                                      |  |
| Nombre                 | Alejandro Ugedo Álvarez-Ossorio      |  |
| Departamento / Área    | Departamento de Ingeniería Eléctrica |  |
| Correo electrónico     | augedo@icai.comillas.edu             |  |
| Profesor               |                                      |  |
| Nombre                 | Alfonso Carlos Sánchez Medina        |  |
| Departamento / Área    | Departamento de Ingeniería Eléctrica |  |
| Correo electrónico     | acsanchez@icai.comillas.edu          |  |
| Profesor               |                                      |  |
| Nombre                 | Daniel Fernández Alonso              |  |
| Departamento / Área    | Departamento de Ingeniería Eléctrica |  |
| Correo electrónico     | dfalonso@icai.comillas.edu           |  |
| Profesor               |                                      |  |
| Nombre                 | Francisco Pérez Thoden               |  |



| Departamento / Área | Departamento de Ingeniería Eléctrica                     |  |
|---------------------|----------------------------------------------------------|--|
| Correo electrónico  | fjperez@comillas.edu                                     |  |
| Profesor            |                                                          |  |
| Nombre              | Javier Gómez-Escalonilla Torres                          |  |
| Departamento / Área | Departamento de Ingeniería Eléctrica                     |  |
| Correo electrónico  | jgomezescalonilla@comillas.edu                           |  |
| Profesor            |                                                          |  |
| Nombre              | Jose Luis Pinela Ocaña                                   |  |
| Departamento / Área | Departamento de Ingeniería Eléctrica                     |  |
| Correo electrónico  | jlpinela@icai.comillas.edu                               |  |
| Profesor            |                                                          |  |
| Nombre              | Juan Carlos Maroto Carro                                 |  |
| Departamento / Área | Departamento de Electrónica, Automática y Comunicaciones |  |
| Correo electrónico  | jcmaroto@icai.comillas.edu                               |  |
| Profesor            |                                                          |  |
| Nombre              | Juan Torres Pozas                                        |  |
| Departamento / Área | Departamento de Ingeniería Eléctrica                     |  |
| Correo electrónico  | jtpozas@icai.comillas.edu                                |  |
| Profesor            |                                                          |  |
| Nombre              | Julio de San Sebastián Soria                             |  |
| Departamento / Área | Departamento de Ingeniería Eléctrica                     |  |
| Correo electrónico  | jdesansebastian@icai.comillas.edu                        |  |
| Profesor            |                                                          |  |
| Nombre              | Laura Vélez de Mendizábal Alonso                         |  |
| Departamento / Área | Departamento de Ingeniería Eléctrica                     |  |
| Correo electrónico  | lvelezmendizabal@icai.comillas.edu                       |  |
| Profesor            |                                                          |  |
| Nombre              | Óscar García Amorós                                      |  |
| Departamento / Área | Departamento de Ingeniería Eléctrica                     |  |
| Correo electrónico  | ogamoros@icai.comillas.edu                               |  |
| Profesor            |                                                          |  |
| Nombre              | Raúl Hidalgo Romo                                        |  |
| Departamento / Área | Departamento de Ingeniería Eléctrica                     |  |

| Correo electrónico  | rhidalgo@comillas.edu                |  |
|---------------------|--------------------------------------|--|
| Profesor            |                                      |  |
| Nombre              | Raul Robledo Cabezuela               |  |
| Departamento / Área | Departamento de Ingeniería Eléctrica |  |
| Correo electrónico  | rrobledo@comillas.edu                |  |
| Profesor            |                                      |  |
| Nombre              | Ricardo Estévez Solis                |  |
| Departamento / Área | Departamento de Ingeniería Eléctrica |  |
| Correo electrónico  | restevez@icai.comillas.edu           |  |
| Profesor            |                                      |  |
| Nombre              | Teresa Freire Barceló                |  |
| Departamento / Área | Departamento de Ingeniería Eléctrica |  |
| Despacho            | Santa Cruz de Marcenado 26           |  |
| Correo electrónico  | tfreire@icai.comillas.edu            |  |
| Teléfono            | 2723                                 |  |

## DATOS ESPECÍFICOS DE LA ASIGNATURA

## Contextualización de la asignatura

## Aportación al perfil profesional de la titulación

En el perfil profesional del graduado en Ingeniería en Tecnologías Industriales se requiere un conocimiento profundo de Ingeniería Eléctrica, por lo que esta asignatura pretende dotar al alumno de los conocimientos básicos eléctricos, tanto teóricos como tecnológicos, correspondientes a la teoría de circuitos clásica y al análisis de sistemas de energía eléctrica.

Al finalizar el curso los alumnos conocerán las características tanto de las principales magnitudes eléctricas como de los componentes básicos de los circuitos, comprenderán y serán capaces de aplicar las principales leyes y teoremas de circuitos, sabrán aplicar las técnicas de análisis tanto en corriente continua como alterna para resolver problemas de tamaño reducido y serán capaces de analizar sistemas eléctricos monofásicos y trifásicos.

Por otra parte, la asignatura hará enfrentarse al alumno por primera vez a un laboratorio eléctrico o electrónico, con lo que se familiarizará con los medios experimentales más frecuentes: instrumentos de medida y elementos auxiliares, y también será capz de diseñar, montar y medir en el laboratorio pequeñas instalaciones eléctricas. También se iniciará con ello en el trabajo en equipo y en la redacción de informes técnicos.

### **Prerequisitos**



Ninguno

| Competencias - Objetivos |                                                                                                                                                                                                                   |  |  |
|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Competer                 | Competencias                                                                                                                                                                                                      |  |  |
| GENERALE                 | S                                                                                                                                                                                                                 |  |  |
| CG03                     | Conocimiento en materias básicas y tecnológicas, que les capacite para el aprendizaje de nuevos métodos y teorías, y les dote de versatilidad para adaptarse a nuevas situaciones.                                |  |  |
| CG04                     | Capacidad de resolver problemas con iniciativa, toma de decisiones, creatividad, razonamiento crítico y de comunicar y transmitir conocimientos, habilidades y destrezas en el campo de la Ingeniería Industrial. |  |  |
| ESPECÍFICAS              |                                                                                                                                                                                                                   |  |  |
| CEE01                    | Capacidad para el cálculo y diseño de máquinas eléctricas.                                                                                                                                                        |  |  |
| CEN01                    | Conocimiento aplicado de electrotecnia.                                                                                                                                                                           |  |  |
| CRI04                    | Conocimiento y utilización de los principios de teoría de circuitos y máquinas eléctricas.                                                                                                                        |  |  |

| Resultad | Resultados de Aprendizaje                                                                                                                                                                    |  |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| RA1      | Conocer las características de las principales magnitudes eléctricas y de los elementos básicos que constituyen los circuitos eléctricos                                                     |  |
| RA2      | Comprender y saber aplicar las principales leyes y teoremas de los circuitos.                                                                                                                |  |
| RA3      | Aplicar las técnicas de análisis de circuitos eléctricos en corriente continua para la resolución de problemas de circuitos de tamaño reducido                                               |  |
| RA4      | Comprender las particularidades de las fuentes dependientes y ser capaz de resolver circuitos que las contengan.                                                                             |  |
| RA5      | Obtener las respuestas natural y forzada de circuitos de primer orden.                                                                                                                       |  |
| RA6      | Aplicar las técnicas de análisis de circuitos eléctricos en corriente alterna senoidal para la resolución de problemas de circuitos de tamaño reducido                                       |  |
| RA7      | Diseñar, montar y medir en el laboratorio pequeños montajes monofásicos y trifásicos de baja tensión                                                                                         |  |
| RA8      | Aplicar las técnicas de análisis de circuitos eléctricos en corriente alterna senoidal para la resolución de problemas de instalaciones monofásicas de baja tensión y de sistemas eléctricos |  |

|     | monofásicos y trifásicos de media y alta tensión                                                                                                |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------|
| RA9 | Emplear los circuitos equivalentes de las máquinas eléctricas para analizar su funcionamiento aislado o en el seno de una instalación eléctrica |

## **BLOQUES TEMÁTICOS Y CONTENIDOS**

## **Contenidos - Bloques Temáticos**

## **Teoría**

#### Tema 1: Iniciación a la Electrocinética

- 1.1 La carga eléctrica.
- 1.2 La corriente eléctrica y su intensidad
- 1.3 Diferencia de potencial o tensión eléctrica
- 1.4 Resistencia y conductancia eléctricas
- 1.5 Ley de Ohm
- 1.6 Trabajo y potencia eléctricos
- 1.7 Ley de Joule
- 1.8 Generadores eléctricos
- 1.9 Circuito simple de corriente continua

### Tema 2: Fundamentos de circuitos en corriente continua

- 2.1 Leyes de Kirchhoff
- 2.2 Elementos de circuitos
- 2.3 Conexión de elementos en serie y en paralelo
- 2.4 Modelado de generadores reales
- 2.5 Divisores de tensión y de intensidad
- 2.6 Conexión de dipolos: equivalencias

#### Tema 3: Resolución de circuitos en corriente continua

- 3.1 Conceptos elementales de topología. Rama. Nudo. Bucle. Malla
- 3.2 Resolución de circuitos
- 3.3 Procedimiento de variables de rama
- 3.4 Procedimiento de corrientes de malla
- 3.5 Procedimiento de tensiones de nudo
- 3.6 Casos especiales: Eliminación de una malla. Eliminación de un nudo

#### Tema 4: Teoremas de circuitos

- 4.1 Teoremas de Thévenin y Norton
- 4.2 Teorema de Superposición
- 4.3 Teorema de Sustitución



- 4.4 Teorema de Compensación
- 4.5 Teorema de Reciprocidad
- 4.6 Teorema de la máxima transferencia de potencia
- 4.7 Teorema de Kennelly

#### Tema 5: Circuitos con fuentes dependientes o controladas

- 5.1 Definición de fuente dependiente
- 5.2 Casos especiales
- 5.3 Equivalencias entre dipolos con fuentes dependientes
- 5.4 Procedimientos de resolución de circuitos con fuentes dependientes

#### Tema 6: Introducción a los regímenes transitorios

- 6.1 Concepto de régimen permanente y régimen transitorio
- 6.2 Transitorios de primer orden en corriente continua: ecuación diferencial y solución general.

Determinación de los valores de contorno (inicial y final) y de la constante de tiempo

#### Tema 7: Circuitos en corriente alterna senoidal

- 7.1 Funciones periódicas. Período, frecuencia, pulsación. Valores medio y eficaz. Componente continua y componente alterna. Simetrías. Valor medio de semionda. Factores de forma y amplitud
- 7.2 Funciones alternas senoidales. Ecuación y notación. Significado de los sentidos y signos
- 7.3 Relaciones entre tensión e intensidad. Resistencia. Condensador. Autoinducción.
- 7.4 Potencias: Potencia instantánea. Potencia activa. Potencia aparente. Potencia reactiva. Triángulo de potencias
- 7.5 Transformación fasorial. Definición. Álgebra: suma, derivación, integración, productos
- 7.6 Relación fasorial en elementos de circuito. Impedancia y admitancia complejas
- 7.7 Resolución de circuitos. Ley de Ohm. Leyes de Kirchhoff. Potencia compleja. Ley de Joule
- 7.7 Circuitos de corriente alterna con inductancias mutuas

## Tema 8: Máquinas y elementos monofásicos

- 8.1 Resistencias, condensadores y bobinas reales. Dipolos equivalentes.
- 8.2 Factor de calidad y factor de pérdidas.
- 8.3 Bobinas con núcleo ferromagnético.
- 8.4 Inductancias mutuas
- 8.5 Generadores
- 8.6 Transformadores
- 8.7 Receptores
- 8.8 Corrección del factor de potencia

## Tema 9: Instalaciones monofásicas

- 9.1 Generación, transporte, distribución, control y utilización de la energía eléctrica.
- 9.2 Valores nominales de máquinas e instalaciones
- 9.3 Rendimiento y regulación de líneas y transformadores



- 9.4 Medida de potencia y energía
- 9.5 Resolución de redes monofásicas
- 9.6 Magnitudes unitarias

#### Tema 10: Sistemas trifásicos equilibrados

- 10.1 Sistemas polifásicos
- 10.2 Sistema trifásico equilibrado
- 10.3 Tensiones e intensidades en sistemas trifásicos
- 10.4 Conexión estrella y triángulo
- 10.5 Equivalencia estrella-triángulo
- 10.6 Circuito monofásico equivalente
- 10.7 Potencia
- 10.8 Medida de potencia activa, reactiva y de energía

#### Tema 11: Transformador trifásico

- 11.1 Sistema magnético
- 11.2 Grupo de conexión e índice horario
- 11.3 Valores nominales y placa de características

#### Tema 12: Otros elementos trifásicos

- 12.1 Líneas
- 12.2 Máquina síncrona trifásica
- 12.3 Motor de inducción
- 12.4 Receptores en redes trifásicas

## Tema 13: Resolución y análisis de instalaciones trifásicas

- 13.1 Esquema unifilar
- 13.2 Circuito monofásico equivalente
- 13.3 Magnitudes unitarias

### Tema 14. Introducción a los sistemas trifásicos desequilibrados

- 14.1 Desequilibrios en red infinita
- 14.2 Potencia en sistemas desequilibrados

#### Laboratorio

## Prácticas de laboratorio

- 1. Introducción al Laboratorio.
- 2. Montajes y conexionados
- 3. Leyes de circuitos
- 4. Teoremas de Thévenin y de Norton



- 5. Teoremas de superposición y sustitución
- 6. Magnitudes en corriente alterna
- 7. Circuitos de corriente alterna
- 8. Medida de potencia instantánea, activa, reactiva y aparente
- 9. Inducciones propias y mutuas
- 10. Transformadores reales
- 11. Medida de potencia activa y reactiva para carga trifásica a cuatro hilos
- 12. Medida de potencia trifásica utilizando el método de Aron

## **METODOLOGÍA DOCENTE**

## Aspectos metodológicos generales de la asignatura

Con el fin de conseguir el desarrollo de competencias propuesto las sesiones presenciales como las no presenciales promoverán la implicación activa de los alumnos en las actividades de aprendizaje.

## **Metodología Presencial: Actividades**

- 1. Lección expositiva: Exposición de los principales conceptos y procedimientos mediante la explicación por parte del profesor. Incluirá presentaciones dinámicas, pequeños ejemplos prácticos y la participación reglada o espontánea de los estudiantes.
- 2. Resolución en clase de problemas propuestos: Resolución de unos primeros problemas para situar al alumno en contexto. La resolución correrá a cargo del profesor y los alumnos de forma cooperativa.
- 3. Resolución grupal de problemas. El profesor planteará pequeños problemas que los alumnos resolverán en pequeños grupos en clase y cuya solución discutirán con el resto de grupos.
- 4. Prácticas de laboratorio. Se formarán grupos de trabajo que tendrán que realizar prácticas de laboratorio regladas o diseños de laboratorio. Las prácticas de laboratorio podrán requerir la realización de un trabajo previo de preparación y finalizar con la redacción de un informe de laboratorio o la inclusión de las distintas experiencias en un cuaderno de laboratorio.
- 5. Tutorías se realizarán en grupo e individualmente para resolver las dudas que se les planteen a los alumnos después de haber trabajado los distintos temas. Y también para orientar al alumno en su proceso de aprendizaje.

## Metodología No presencial: Actividades

- 1. Estudio individual del material a discutir en clases posteriores: Actividad realizada individualmente por el estudiante cuando analiza, busca e interioriza la información que aporta la materia y que será discutida con sus compañeros y el profesor en clases posteriores
- 2. Resolución de problemas prácticos a resolver fuera del horario de clase por parte del alumno: El alumno debe utilizar e interiorizar los conocimientos aportados en la materia. La corrección con toda la clase se realizará por parte de alguno de los alumnos o el profesor según los casos. La corrección individualizada de cada ejercicio la realizará el propio alumno u otro compañero según los casos (método de intercambio). Resolución grupal de problemas y esquemas de los conceptos teóricos
- 3. Trabajo en grupo. Se formarán grupos de trabajo que tendrán que realizar una tarea fuera del horario lectivo que requerirá compartir la información y los recursos entre los miembros con vistas a alcanzar un objetivo común

4. Preparación de las prácticas de laboratorio y elaboración de los informes de laboratorio

### **RESUMEN HORAS DE TRABAJO DEL ALUMNO**

| HORAS PR                                                                      | RESENCIALES                                             |                             |
|-------------------------------------------------------------------------------|---------------------------------------------------------|-----------------------------|
| Clase magistral y presentaciones generales                                    | Resolución de problemas de carácter práctico o aplicado | Prácticas de<br>laboratorio |
| 60.00                                                                         | 34.00                                                   | 26.00                       |
| HORAS NO I                                                                    | PRESENCIALES                                            |                             |
| Estudio de conceptos teóricos fuera del horario de clase por parte del alumno | Resolución de problemas de carácter práctico o aplicado | Prácticas de<br>laboratorio |
| 55.00                                                                         | 146.00                                                  | 39.00                       |
|                                                                               | CRÉDITOS ECTS: 12,0 (                                   | 360,00 horas)               |

## **EVALUACIÓN Y CRITERIOS DE CALIFICACIÓN**

| Actividades de evaluación                                                                   | Criterios de evaluación                                                                                                                                                                                                                                          | Peso |
|---------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Exámenes semestrales e intersemestrales<br>y pruebas cortas realizadas en horas de<br>clase | Comprensión de conceptos.  Aplicación de conceptos a la resolución de problemas prácticos.  Análisis e interpretación de los resultados obtenidos en la resolución de problemas.  Presentación y comunicación escrita.                                           | 80   |
| Asistencia y participación en el<br>laboratorio y elaboración de informes de<br>laboratorio | Compresión de conceptos.  Aplicación de conceptos a la realización de prácticas en el laboratorio.  Análisis e interpretación de los resultados obtenidos en las prácticas de laboratorio.  Capacidad de trabajo en grupo.  Presentación y comunicación escrita. | 20   |

## **Calificaciones**

#### Convocatoria ordinaria

- Nota total: 80% Teoría + 20% Laboratorio
- **Teoría** (sobre 100%): 60% exámenes cuatrimestrales, 25% exámenes intercuatrimestrales y 15% de pruebas de seguimiento realizadas en horas de clase.
- Laboratorio (sobre 100%) 30% preparación, 40% trabajo en el laboratorio y 30% informes).
- Para aprobar la asignatura se exige una nota mínima de 5 en teoría y laboratorio y una nota



mínima de 3,5 puntos en el segundo examen cuatrimestral. Si se aprueba la parte de laboratorio y se suspende la de teoría, en el acta figurará la calificación de la parte suspensa y se guardará la calificación de la parte aprobada hasta la convocatoria extraordinaria. El suspenso de la parte de laboratorio provocará la pérdida del derecho a presentarse a los exámenes tanto de la convocatoria ordinaria como de la extraordinaria.

#### Convocatoria Extraordinaria

- Nota total: 80% Teoría + 20% Laboratorio
- Teoría (sobre 100%): 85% examen de la convocatoria extraordinaria, 15% pruebas de seguimiento.
- **Laboratorio**: nota de laboratorio de la convocatoria ordinaria, siempre que sea mayor que 5/10 (en otro caso, se pierde el derecho a presentarse al examen de la convocatorioa extraordinaria).
- Para aprobar la asignatura se exige una nota mínima de 5 en teoría y laboratorio. Si se aprueba una parte y se suspende otra, en el acta figurará la calificación de la parte suspensa.

La falta de asistencia a más del 15% de las clases de teoría podrá provocar la pérdida del derecho a presentarse al examen de la convocatoria ordinaria.

La falta de asistencia a más del 15% de las sesiones de laboratorio provocará la pérdida del derecho a presentarse a los exámenes tanto de la convocatoria ordinaria como de la extraordinaria.

## **BIBLIOGRAFÍA Y RECURSOS**

### **Bibliografía Complementaria**

- F. J. Chacón, Electrotecnia, Universidad Pontificia Comillas.
- J.W. Nilsson, S.A. Riedel. Circuitos eléctricos.(7ª Edición). Prentice Hall, 2005
- C. Alexander, M. Sadiku. Fundamentos de Circuitos eléctricos. McGraw-Hill
- F. J. Chacón, Medidas Eléctricas para Ingenieros, Universidad Pontificia Comillas.
- Moodle:
  - Ejercicios
  - Transparencias
  - o Información general del laboratorio
  - o Guiones de prácticas de laboratorio
  - o Problemas de examen con solución

En cumplimiento de la normativa vigente en materia de **protección de datos de carácter personal**, le informamos y recordamos que puede consultar los aspectos relativos a privacidad y protección de datos <u>que ha aceptado en su matrícula</u> entrando en esta web y pulsando "descargar"

https://servicios.upcomillas.es/sedeelectronica/inicio.aspx?csv=02E4557CAA66F4A81663AD10CED66792

# Electrotecnia 2º GITI 2020-2021

## <u>PLANIFICACIÓN</u>

| Horas presenciales dedicadas a cada tema, incluyendo las lecciones expositivas, la realizaci | ón de   |  |
|----------------------------------------------------------------------------------------------|---------|--|
| problemas en clase y las pruebas cortas. No se incluyen los exámenes intersemestrales o      |         |  |
| semestrales ni las prácticas de laboratorio                                                  |         |  |
| Tema 1: Iniciación a la Electrocinética                                                      |         |  |
| 1.1 La carga eléctrica.                                                                      |         |  |
| 1.2 La corriente eléctrica y su intensidad                                                   |         |  |
| 1.3 Diferencia de potencial o tensión eléctrica                                              |         |  |
| 1.4 Resistencia y conductancia eléctricas                                                    | (4h)    |  |
| 1.5 Ley de Ohm                                                                               | ( '''') |  |
| 1.6 Trabajo y potencia eléctricos                                                            |         |  |
| 1.7 Ley de Joule                                                                             |         |  |
| 1.8 Generadores eléctricos                                                                   |         |  |
| 1.9 Circuito simple de corriente continua                                                    |         |  |
| Tema 2: Fundamentos de circuitos en corriente continua                                       |         |  |
| 2.1 Leyes de Kirchhoff                                                                       |         |  |
| 2.2 Elementos de circuitos                                                                   |         |  |
| 2.3 Conexión de elementos en serie y en paralelo                                             | (2h)    |  |
| 2.4 Modelado de generadores reales                                                           |         |  |
| 2.5 Divisores de tensión y de intensidad                                                     |         |  |
| 2.6 Conexión de dipolos: equivalencias                                                       |         |  |
| Tema 3: Resolución de circuitos en corriente continua                                        |         |  |
| 3.1 Conceptos elementales de topología. Rama. Nudo. Bucle. Malla                             |         |  |
| 3.2 Resolución de circuitos                                                                  |         |  |
| 3.3 Procedimiento de variables de rama                                                       | (5h)    |  |
| 3.4 Procedimiento de corrientes de malla                                                     |         |  |
| 3.5 Procedimiento de tensiones de nudo                                                       |         |  |
| 3.6 Casos especiales: Eliminación de una malla. Eliminación de un nudo                       |         |  |
| Tema 4: Teoremas de circuitos                                                                |         |  |
| 4.1 Teoremas de Thévenin y Norton                                                            |         |  |
| 4.2 Teorema de Superposición                                                                 |         |  |
| 4.3 Teorema de Sustitución                                                                   | (OI-)   |  |
| 4.4 Teorema de Compensación                                                                  | (8h)    |  |
| 4.5 Teorema de Reciprocidad                                                                  |         |  |
| 4.6 Teorema de la máxima transferencia de potencia                                           |         |  |
| 4.7 Teorema de Kennelly                                                                      |         |  |
| Tema 5: Circuitos con fuentes dependientes o controladas                                     |         |  |
| 5.1 Definición de fuente dependiente                                                         |         |  |
| 5.2 Casos especiales                                                                         | (6h)    |  |
| 5.3 Equivalencias entre dipolos con fuentes dependientes                                     | (- )    |  |
| 5.4 Procedimientos de resolución de circuitos con fuentes dependientes                       |         |  |
| Tema 6: Introducción a los regímenes transitorios                                            |         |  |
| 6.1 Concepto de régimen permanente y régimen transitorio                                     |         |  |
| 6.2 Transitorios de primer orden en corriente continua: ecuación diferencial y               | (5h)    |  |
| solución general. Determinación de los valores de contorno (inicial y final) y de la         | (5)     |  |
| constante de tiempo                                                                          |         |  |
| Constants do nompo                                                                           | 1       |  |

| Tema 7: Circuitos en corriente alterna senoidal                                                                                                                 |                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 7.1 Funciones periódicas. Período, frecuencia, pulsación. Valores medio y eficaz. Componente continua y componente alterna. Simetrías. Valor medio de semionda. |                    |
| Factores de forma y amplitud                                                                                                                                    |                    |
| 7.2 Funciones alternas senoidales. Ecuación y notación. Significado de los                                                                                      |                    |
|                                                                                                                                                                 |                    |
| sentidos y signos                                                                                                                                               |                    |
| 7.3 Relaciones entre tensión e intensidad. Resistencia. Condensador.                                                                                            |                    |
| Autoinducción.                                                                                                                                                  | (12h)              |
| 7.4 Potencias: Potencia instantánea. Potencia activa. Potencia aparente. Potencia                                                                               |                    |
| reactiva. Triángulo de potencias                                                                                                                                |                    |
| 7.5 Transformación fasorial. Definición. Álgebra: suma, derivación, integración,                                                                                |                    |
| productos                                                                                                                                                       |                    |
| 7.6 Relación fasorial en elementos de circuito. Impedancia y admitancia complejas                                                                               |                    |
| 7.7 Resolución de circuitos. Ley de Ohm. Leyes de Kirchhoff. Potencia compleja.                                                                                 |                    |
| Ley de Joule                                                                                                                                                    |                    |
| 7.7 Circuitos de corriente alterna con inductancias mutuas                                                                                                      |                    |
| Tema 8: Máquinas y elementos monofásicos                                                                                                                        |                    |
| 8.1 Resistencias, condensadores y bobinas reales. Dipolos equivalentes.                                                                                         |                    |
| 8.2 Factor de calidad y factor de pérdidas.                                                                                                                     |                    |
| 8.3 Bobinas con núcleo ferromagnético.                                                                                                                          | (13h)              |
| 8.5 Generadores                                                                                                                                                 | (1311)             |
| 8.6 Transformadores                                                                                                                                             |                    |
| 8.7 Receptores                                                                                                                                                  |                    |
| 8.8 Corrección del factor de potencia                                                                                                                           |                    |
| Tema 9: Instalaciones monofásicas                                                                                                                               |                    |
| 9.1 Generación, transporte, distribución, control y utilización de la energía eléctrica.                                                                        |                    |
| 9.2 Valores nominales de máquinas e instalaciones                                                                                                               |                    |
| 9.3 Rendimiento y regulación de líneas y transformadores                                                                                                        | (6h)               |
| 9.4 Medida de potencia y energía                                                                                                                                | (- )               |
| 9.5 Resolución de redes monofásicas                                                                                                                             |                    |
| 9.6 Magnitudes unitarias                                                                                                                                        |                    |
| Tema 10: Sistemas trifásicos equilibrados                                                                                                                       |                    |
| 10.1 Sistemas polifásicos                                                                                                                                       |                    |
| 10.2 Sistema trifásico equilibrado                                                                                                                              |                    |
| 10.3 Tensiones e intensidades en sistemas trifásicos                                                                                                            |                    |
| 10.4 Conexión estrella y triángulo                                                                                                                              | (7h)               |
| 10.5 Equivalencia estrella-triángulo                                                                                                                            | (711)              |
| 10.6 Circuito monofásico equivalente                                                                                                                            |                    |
| 10.7 Potencia                                                                                                                                                   |                    |
|                                                                                                                                                                 |                    |
| 10.8 Medida de potencia activa, reactiva y de energía                                                                                                           |                    |
| Tema 11: Transformador trifásico                                                                                                                                |                    |
| 11.1 Sistema magnético                                                                                                                                          | (4h)               |
| 11.2 Grupo de conexión e índice horario                                                                                                                         | (,                 |
| 11.3 Valores nominales y placa de características                                                                                                               |                    |
| Tema 12: Otros elementos trifásicos                                                                                                                             |                    |
| 12.1 Líneas                                                                                                                                                     |                    |
| 12.2 Máquina síncrona trifásica                                                                                                                                 | (2h)               |
| 12.3 Motor de inducción                                                                                                                                         |                    |
| 12.4 Receptores en redes trifásicas                                                                                                                             |                    |
| Tema 13: Resolución y análisis de instalaciones trifásicas                                                                                                      |                    |
| 13.1 Esquema unifilar                                                                                                                                           | / <del>7</del> 1.\ |
| 13.2 Circuito monofásico equivalente                                                                                                                            | (7h)               |
| 13.3 Magnitudes unitarias                                                                                                                                       |                    |
| Tema 14. Introducción a los sistemas trifásicos desequilibrados                                                                                                 |                    |
| 14.1 Desequilibrios en red infinita                                                                                                                             | (3h)               |
| 14.1 Desequilibrios en red infinita<br>14.2 Potencia en sistemas desequilibrados                                                                                | (311)              |
| וא.ב ו טופווטום פוז פופנפווום עבפפיןעוווטומעטפ                                                                                                                  |                    |