

Examen Parcial. Curso 2017-2018 12 febrero de 2018

APELLIDOS	NOMBRE	GRADO

Ejercicio 1 (40 minutos – 4 puntos)

La siguiente figura muestra un diagrama de bloques simplificado de la arquitectura interna de un microprocesador:

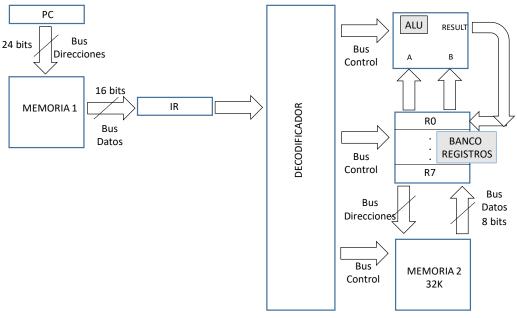


Figura 1

Responde a las siguientes preguntas de acuerdo a la información proporcionada en la figura. Justifica sus respuestas:

1- ¿Es una arquitectura Harvard?

2- Indique la anchura del bus de datos y del bus de direcciones, así como el tamaño total de la memoria/s del sist<u>ema. Especifique en su respuesta si la memoria/memorias son de datos, de</u>

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Departamento TILLP://u.e.uc3m.es

Examen Parcial. Curso 2017-2018 12 de febrero de 2018

3- Tamaño del IR y del PC

_						
4-	Explica en unas p	ocas líneas	qué es v cóm	o se hace la	ifase fetch d	e la unidad de control.

5- ¿Para qué se utiliza el PC?

6- ¿Cuantos bits se necesitan para direccionar un registro del banco de registros internos dentro de una instrucción?

7- Explique qué se entiende por modo de direccionamiento. Proporcione dos ejemplos de dos modos de direccionamiento típicos, y cómo afectan a la codificación de la instrucción

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Departamento TILLP://u.e.uc3m.es

Examen Parcial. Curso 2017-2018 12 de febrero de 2018

- 8- Organización de la memoria:
 - a) Tenemos varios chips que implementan la memoria etiquetada como 1 en la Figura:
 - 4 chips de 4Mx8 bits
 - 1 chip de 4Mx16 bits
 - 1 chip de 8Mx16 bits

Usa el mínimo número de ellos para implementar la memoria y dibuja el mapa de memoria. El chip más grande debe estar en las direcciones más bajas. Especifica los rangos de direcciones asignados a cada chip en hexadecimal.

Use un decodificador 2:4 y puertas lógicas, para obtener las señales CS se cada chip de memoria. Las señales CS son activas a nivel bajo.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Departamento IIII.p.//uie.uc3m.es

Examen Parcial. Curso 2017-2018 12 de febrero de 2018

Ejercicio 2 (20 minutos - 3 puntos)

Se tiene una arquitectura Von Neumann de 16 bits, con capacidad de direccionar 128MB, sólo a nivel de palabra. Dicha arquitectura contiene 8 registros internos propósito general y filosofía Load & Store. Con esta información, conteste a las siguientes preguntas:

- 1) (70%) Diseñe una codificación de los distintos tipos de instrucciones microprocesador, minimizando en lo posible el tamaño de la instrucción ajustando a números enteros de palabras (es decir, las instrucciones pueden ocupar una palabra o más de una; en el caso de más de una, la primera que se leerá contendrá, al menos, el opcode). Los tipos de instrucciones que debe tener el microprocesador, son:
 - 2 instrucciones de transferencia de datos entre memoria y registros internos, con direccionamiento directo.
 - 5 instrucciones de transferencia de datos entre memoria y registros internos, con direccionamiento indexado.
 - 2 instrucciones de transferencia de datos entre memoria y registros internos, con direccionamiento indirecto con desplazamiento, dando el desplazamiento en complemento a 2, con 10 bits.
 - 14 instrucciones aritmético/lógicas de operar entre registros, siendo el resultado el mismo registro que uno de los operandos.
 - 3 instrucciones aritmético/lógicas de operar entre registros, con uno de los operandos dado por direccionamiento inmediato, limitado a 8 bits, y dando el resultado en el otro operando.
 - 9 instrucciones de control con direccionamiento inherente.
 - 7 saltos condicionales con direccionamiento relativo a contador de programa, siendo el desplazamiento relativo de más/menos 1Kpalabra.
- 2) (30%) Indique una respuesta justificada a cada una de las siguientes preguntas:
 - a) Número máximo de palabras que ocupa una instrucción
 - b) Número mínimo de palabras que ocupa una instrucción
 - c) Tamaño del Registro de Instrucción
 - d) Tamaño del Contador de Programa
 - e) Tamaño del Puntero de Pila
 - f) Tamaño de los Registros internos

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Departamento IIII.p.//uie.uc3m.es

Examen Parcial. Curso 2017-2018 12 de febrero de 2018

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Departamento TILLP://u.e.uc3m.es

Examen Parcial. Curso 2017-2018 12 de febrero de 2018

Ejercicio 3 (30 minutos - 3 puntos)

Se quiere desarrollar una aplicación con el microcontrolador STM32L152RB para una cafetera que incluya un LED, que se enciende cuando se le aplica un '1' lógico, y un selector de modo de funcionamiento, tal como se muestra en la figura 3. Para la conexión de estos dos dispositivos se van a utilizar los pines PCO, PC1, PC2 y PC3 del microcontrolador.

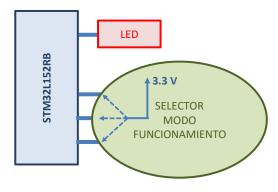


Figura 3

El selector de modo de funcionamiento puede estar en una de estas tres posiciones:

- APAGADO: En esta posición el LED está apagado
- CAFÉ EXPRESSO: En esta posición el LED está encendido
- CAFÉ CAPPUCHINO: En esta posición el LED está parpadeando

Al final de este enunciado se encuentra el código desarrollado para la aplicación.

Se pide:

a) Suponiendo que antes de iniciar la ejecución del programa se resetea el microcontrolador, indique el contenido de los registros que se indican después de la ejecución de las líneas de inicialización del programa (líneas de código anteriores a while(1))

REGISTRO	CONTENIDO EN HEXADECIMAL		
GPIOC_MODER			

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Departamento IIII.p.//uie.uc3m.es

Examen Parcial. Curso 2017-2018 12 de febrero de 2018

b) Indique razonadamente a qué pines se encuentran conectados el LED y el selector de modo de funcionamiento

Dispositivo		Pines de conexión	Justificación
LED			
	APAGADO		
Selector de modo de funcionamiento	CAFÉ EXPRESSO		
	CAFÉ CAPPUCHINO		

c) Represente el diagrama de flujo del programa

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Departamento IIII.P.//u.e.uc3m.es

Examen Parcial. Curso 2017-2018 12 de febrero de 2018

d) Indique qué cambios realizaría en el código si se cambia el pin de conexión del LED al pin PB6
 (ponga una cruz al lado de las líneas de código que habría que cambiar e incluya a la derecha la
 nueva línea para este cambio en la conexión del LED).

CÓDIGO DEL PROGRAMA

```
#include "stm32l1xx.h"
# include "retardo.h" // BIBLIOTECA QUE INCLUYE LA FUNCIÓN RETARDO (X)
                    // RETARDO(X) PRODUCE RETARDO DEL № DE SEGUNDOS INDICADO EN X
int main(void){
// INICIALIZACIÓN GPIO
GPIOC->MODER &= ^{\circ}0x0000003F;
GPIOC->MODER &= ^{(1 << (3*2 +1))};
GPIOC->MODER |=(1 << (3*2));
while (1) {
       if ((GPIOC->IDR&0x00000002)!=0) {
               GPIOC->BSRR = (1<<3);
       }
       else if ((GPIOC->IDR&0x00000004)!=0) {
               GPIOC->BSRR = (1<<3);
               retardo(1);
               GPIOC->BSRR = (1<<3)<<16;
               retardo (1);
       else {
```


CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Departamento IIII.p://uie.uc3m.es