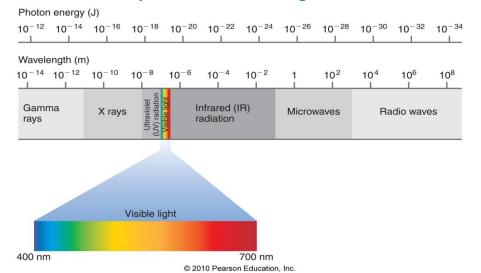
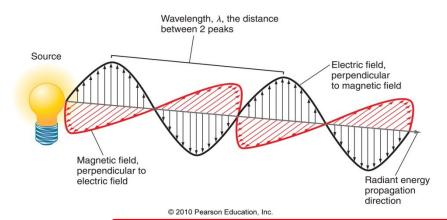
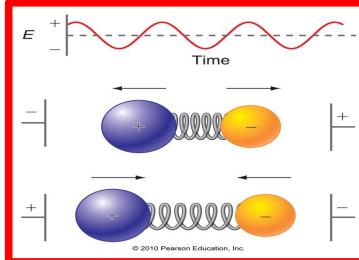
Tema 7.-Espectroscopía vibracional y rotacional

- 7.1. Interacción de la radiación con la materia
- 7.2. Absorción, emisión espontánea y emisión estimulada
- 7.3. Reglas de selección
- 7.4. Espectroscopía vibracional
- 7.5. Espectroscopía rotacional
- 7.6 Efecto Raman


CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -


ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

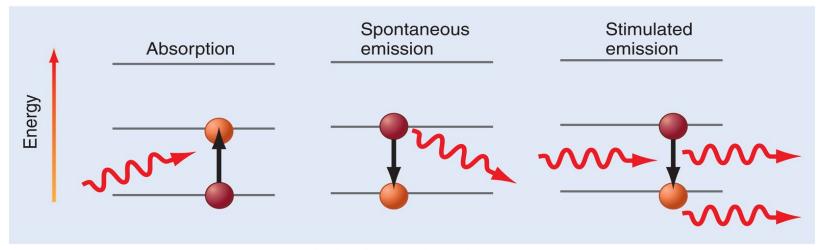

Interacción de la radiación con la materia

El espectro electromagnético

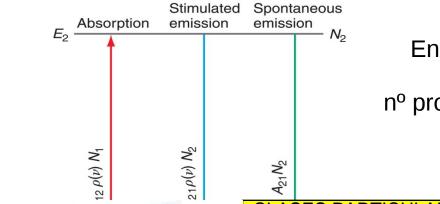
Campo electromagnético asociado a una onda de luz

TABLE 19.1 IMPORTANT SPECTROSCOPIES AND THEIR SPECTRAL RANGE

Spectral Range	λ (m)	ν (Hz)	$\widetilde{\nu}$ (cm ⁻¹)	Energy (J)	Spectroscopy
Radio	>0.1	$< 3 \times 10^9$	>0.1	$<2 \times 10^{-24}$	ار NMR
Microwave	0.001 - 0.1	$3 \times 10^9 - 3 \times 10^{11}$	0.1 - 10	$2 \times 10^{-24} - 2 E_{10} R^2 =$	hc Botational
Infrared	$7 \times 10^{-7} - 1 \times 10^{-3}$	$3 \times 10^{11} - 4 \times 10^{14}$	$10 - 1 \times 10^4$	$2 \times 10^{-22} - 3 \times 10^{-19}$	Vibrational
Visible	$4 \times 10^{-7} - 7 \times 10^{-7}$	$4 \times 10^{14} - 7 \times 10^{14}$	$1 \times 10^4 - 2 \times 10^4$	$3 \times 10^{-19} - 5 \times 10^{-19}$	Electronic


Gartagena 99

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70


ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Λ

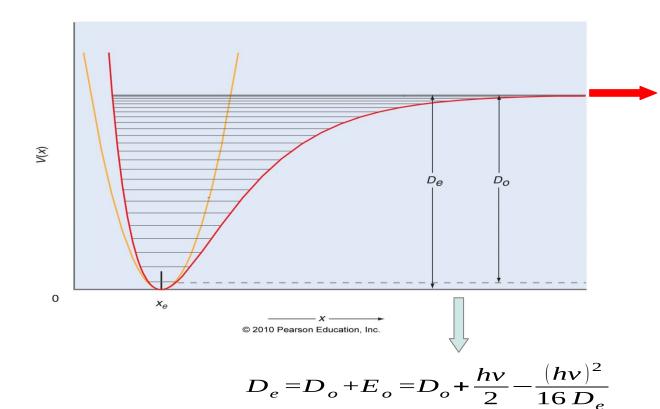
Absorción y Emisión

© 2010 Pearson Education, Inc.

En el equilibrio (condiciones fotoestacionarias)

nº procesos absorción = nº procesos emisión

$$B_{12}\rho(\nu)N_1 = B_{21}\rho(\nu)N_2 + A_{21}N_2$$


Copyright © 2010 Pearson Education, Ir

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

CALL OR WHATSAPP:689 45 44 70

www.cartagena99.com no se hace responsable de la información contenida en el presente documento en virtue al la Einsteir Artículo 17.1 de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico, de 11 de julio de 200 Einsteir Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganoslo saber y será retirada.

Potencial anarmónico de Morse

$$V(x) = D_e \left[1 - e^{-\alpha(x - x_e)} \right]^2$$

$$\alpha = \sqrt{\frac{k}{2D_e}}$$

Niveles vibracionales para un oscilador cuántico con potencial de Morse

$$E_n = h\nu\left(n + \frac{1}{2}\right) - \frac{(h\nu)^2}{4D_e}\left(n + \frac{1}{2}\right)^2$$
 $n = 0, 1, 2, 3, ...$

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

CH₄

Determinación de Estructura Molecular a partir de Espectroscopía vibracional y rotacional

TABLE 19.3	VALUES OF MOLECULAR CONSTANTS FOR SELECTED DIATOMIC MOLECULES
-------------------	---

	$\widetilde{\nu}$ (cm ⁻¹)	$\nu(s^{-1})$	x_e (pm)	$k (\mathrm{N} \mathrm{m}^{-1})$	$B (cm^{-1})$	$D_0 (\mathrm{kJ} \mathrm{mol}^{-1})$	D_0 (J molecule $^{-1}$)
H ₂	4401	1.32×10^{14}	74.14	575	60.853	436	7.24×10^{-19}
D_2	3115	9.33×10^{13}	74.15	577	30.444	443	7.36×10^{-19}
¹ H ⁸¹ Br	2649	7.94×10^{13}	141.4	412	8.4649	366	6.08×10^{-19}
¹ H ³⁵ Cl	2991	8.97×10^{13}	127.5	516	10.5934	432	7.17×10^{-19}
¹ H ¹⁹ F	4138	1.24×10^{14}	91.68	966	20.9557	570	9.46×10^{-19}
$^{1}H^{127}I$	2309	6.92×10^{13}	160.92	314	6.4264	298	4.95×10^{-19}
$^{35}\text{Cl}_2$	559.7	1.68×10^{13}	198.8	323	0.2440	243	4.03×10^{-19}
$^{79}\mathrm{Br}_2$	325.3	9.75×10^{12}	228.1	246	0.082107	194	3.22×10^{-19}
$^{19}F_2$	916.6	2.75×10^{13}	141.2	470	0.89019	159	2.64×10^{-19}
$^{127}I_{2}$	214.5	6.43×10^{12}	266.6	172	0.03737	152	2.52×10^{-19}
$^{14}N_{2}$	2359	7.07×10^{13}	109.8	2295	1.99824	945	1.57×10^{-18}
$^{16}O_2$	1580.	4.74×10^{13}	120.8	1177	1.44563	498	8.27×10^{-19}
¹² C ¹⁶ O	2170.	2.56×10^{13}	112.8	1902	1.9313	1076	1.79×10^{-18}

_artagena(

Source: Lide, D. R., Ed., CRC Handbook of Chemistry and Physics, 83rd Edition, CRC Press, Boca Raton, FL, 2003, CLASES PARTICULARES, TUTORIAS TECNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

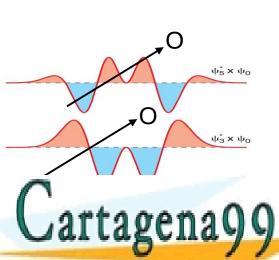
ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Reglas de Selección para transiciones vibracionales

Oscilador armónico: $\Delta v = \pm 1$

Oscilador anarmónico: $\Delta v = \pm 1, \pm 2, \pm 3, ...$

sobretonos


Integral del momento dipolar de transición entre los estados m y n

$$\mu_x^{mn} = \int \psi_m^*(x) \mu_x(x) \psi_n(x) \, dx \neq 0$$

Copyright © 2010 Pearson Education, Inc.

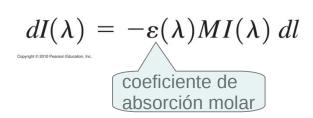
Obtención de los tránsitos permitidos entre niveles vibracionales

$$\mu_{x}(x(t)) = \mu_{0x} + x(t) \left(\frac{d\mu_{x}}{dx}\right)_{x=0} + \dots$$

$$\mu_x^{m0} = A_m A_0 \mu_{0x} \int_{-\infty}^{\infty} H_m(\alpha^{1/2} x) H_0(\alpha^{1/2} x) e^{-\alpha x^2} dx$$

$$+ A_m A_0 \left[\left(\frac{d\mu_x}{dx} \right)_{x=0} \right] \int_{-\infty}^{\infty} H_m(\alpha^{1/2} x) x H_0(\alpha^{1/2} x) e^{-\alpha x^2} dx$$

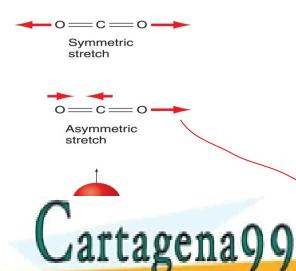
Copyright © 2010 Pearson Education, Inc.

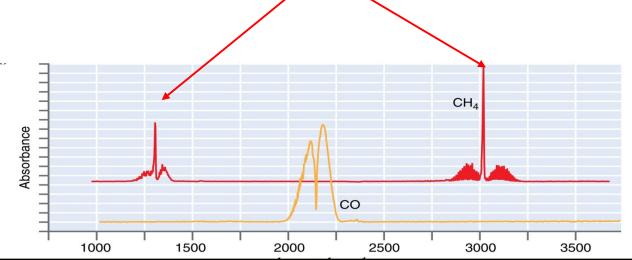

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

Espectroscopia Infrarroja

Monochromator Sample cell Detector © 2010 Pearson Education, Inc.




Ecuación de Lambert-Beer

$$rac{I(\lambda)}{I_0(\lambda)} = e^{-arepsilon(\lambda)Ml}$$

CH₄ solo presenta 2 bandas en lugar de 9 la estructura de las bandas es debido a tránsitos rotacionales

Modos normales de vibración

CLASES PARTICULARES, TUTORIAS TECNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

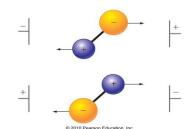
ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

N-H stretch

C=C stretch

1620-1680 1200-1300

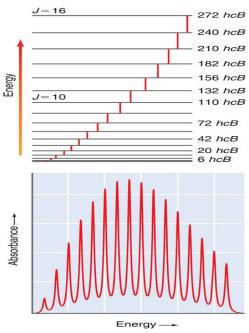
600-800


www.cartagenage.com no se hace responsable de la información contenida en el presente 200 agento en virtud al Artículo 17.18 de da Ley de Servicios de la Sociedad de la Información y de Comercio Electronico, de 11 de julio de 2002 stretch Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganosto saber y será retirada.

Espectroscopia Rotacional

$$E = \frac{\hbar^2}{2\mu r_0^2} J(J+1) = \frac{\hbar^2}{8\pi^2 \mu r_0^2} J(J+1) = hcBJ(J+1)$$

Copyright © 2010 Pearson Education, Inc.



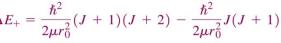
Rotación activa en espectroscopia de absorción rotacional (microondas)

TABLE 19.5 FREQUENCIES NEEDED TO EXCITE VARIOUS ROTATIONAL TRANSITIONS			
$J\!\to\! J'$	Δu	$\Delta(\Delta u)$	
$0 \rightarrow 1$	2cB	2cB	
$1 \rightarrow 2$	4cB	2cB	
$2 \rightarrow 3$	6 <i>cB</i>	2cB	
$3 \rightarrow 4$	8 <i>cB</i>	2cB	
4→5	10 <i>cB</i>	2 <i>cB</i>	

© 2010 Pearson Education, Inc.

CO

700 K



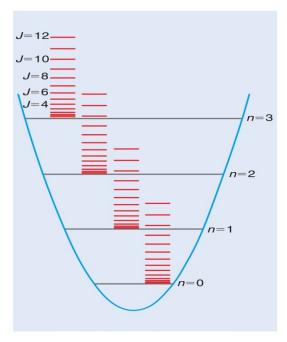
for $\Delta J = +1$

Regla de Selección

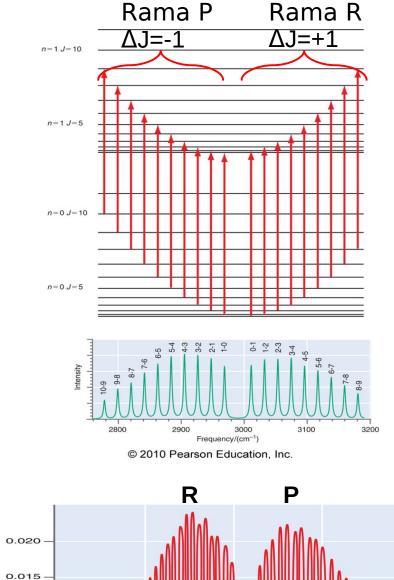
$$\Delta E_{+} = \frac{\hbar^{2}}{2\mu r_{0}^{2}} (J+1)(J+2) - \frac{\hbar^{2}}{2\mu r_{0}^{2}} J(J+1)$$

 $\Delta J = \pm 1$ rtagena99

ENVÍA WHATSÁPP: 689 45 44 70


ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

 g_0


 n_0

www.cartagena99.com no se hace responsable de la información contenida en el presente documento en vintud al conferención de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico de 11 de julio de 2002. Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganoslo saber y será retirada.

Espectro roto-vibracional

vibro-rotación

CLASES PARTICULARES, TUTORÍAS TECNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

ESPECTION AT ME CO

© 2010 Pearson t ducation, Inc.

www.cartagena99.com no se hace responsable de la información contenida en el presente documento en virtud al Artículo 17.1 de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico, de 11 de principale la banda Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganoslo saber y será retirada.