
Airfoils 



Kutta condition (I) 

 We remember that: 
 
 

 The circulation is constant in any point in the flow field. 
 How can we obtain lift if we need circulation and the circulation in the upstream 

farfield is zero? 
 
Any body immersed in a free stream that can be treated as a potential fluid, shows 
two separatix streamlines that touch the body in the stagnation points. Those 
stagnation points define the upper and lower surface of the profile. 
But in reality, the viscosity modifies the velocity profile and the pressure, thus the 
flow detaches before the second stagnation point. 
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Kutta condition (II) 

 We have seen the cylinder example where many solutions are available 
depending on the value of the circulation Γ 

 Similar approach can be applied in a generic profile where many potential 
solutions fit the shape of the profile. 
 
 
 
 
 
 
 
 The only difference between these two cases  a) and b) is their circulation Γ 

a) b) 



Kutta condition (III) 

 We know that the flow moves towards the lower pressure areas , and when it has 
to overcome an adverse pressure gradient, it has to pay with its kinetic energy. 

 If we had a flow as shown in the figure, the flow should bend in the corner A and 
in theory, the velocity in this point should be infinite, and it would have to 
strongly decelerate between A and B. 
 
 
 
 
 
 

 We cannot have infinite velocity, so we cannot have infinite pressure gradient, 
then, the upper and lower surface pressure in the trailing edge must be equal. 
 
 

Kutta condition: the circulation around the profile is the one that 
• either sets a stagnation point in the trailing edge 
• or removes the second stagnation point 



Kutta condition (IV) 

 The Kutta condition shows two different behaviours: 
 
 
 
 

a) The trailing edge has two different tangents, thus the only option in order to avoid 
having different velocities in the same point is that those velocities should be zero 
(stagnation point) 

b) The upper and lower surfaces have the same slope in the trailing edge and we can 
have a non-zero velocity that is identical in the upper and lower surface. 

 
 
 

a) b) 



Profile circulation 

 We know that before the movement starts we do not have any circulation; and 
according to the potential model, we cannot create circulation with the time 
evolution. 

 We can explain the generation of the circulation because we start from a static 
situation and we consider a fluid volume around the profile. But A closed curve 
will remain closed and thus we can consider the circulation in this closed curve 
will remain constant and equal to zero. However, we can split the curve in two, 
and we can justify the existence of circulation around the profile because we 
have left an opposite circulation in the downwash. 



Coefficients 

 The pressure coefficient is: 
 
 
 

 If we consider the component of the pressure force that is perpendicular to the 
incoming flow direction we obtain the same cp(x). 

 The lift distribution is: 
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Coefficients 

 The lift and lift coefficient are: 
 
 
 
 

 Aerodynamic center of a profile: is the chord-wise length about which the 
pitching moment is independent of the lift coefficient and the angle of attack. 
 It is located in: 

Subsonic  
 
Supersonic 
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Vortex panel method 

 We replace the profile by a set of panels with distributed singularities (vortex) 
 
 
 
 

 The strength of the singularities is calculated so that the velocity in a certain 
point of the panel (usually the center of the panel) is tangent to the panel. 

 There are still more variables than equations and we need to impose the Kutta 
condition. 

 Finally our problem can be solved as a linear system. 
 



Thin airfoil theory 

 The leading edge is the point at the front of the airfoil that has maximum 
curvature. 

 The trailing edge is defined similarly as the point of maximum curvature at the 
rear of the airfoil. 

 Chord line is a straight line going from the leading edge (point of minimum 
radius) to the trailing edge. 

 Mean camber line  is constituted by the midpoints of all airfoil cross-section 
segments perpendicular to the chord. 

 The thickness of an airfoil is measured perpendicular to the chord line. 



Thin airfoil theory 

 The Laplace equation that describes the potential of velocities is: 
 
 

 And the boundary conditions we have to apply are: 
 Velocity tangent to the surface 

 
 
 

 Kutta condition in the trailing edge 
 Non-perturbed free flow in the infinite upwash: 

 
 

 The pressure coefficient is: 
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Thin airfoil theory: hypothesis 

 Incompressible 
 Inviscid 
 Irrotational 
 Small angle of attack 
 Small airfoil thickness 
 Small camber 
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Thin airfoil theory: linearization 

 Considering small thickness, curvature and angle of attack, we can suppose that 
perturbations of the velocity are small too. 

 
 

 After linearizing this problem and neglecting terms of order ε, we conclude that 
the boundary conditions are applied on z=0; then we can apply superposition 
principle. 

 Finally, we obtain the following: 
 

 differential equation: 
 
 and boundary conditions: 
 
 

 
 The pressure coefficient results: 
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Thin airfoil theory: linearization 

We have seen that the thin airfoil theory allows superposition of the potential of 
velocities; thus we can linearly decompose any problem into two solutions. 

 Anti-symmetric problem:  ANGLE OF ATTACK + CURVATURE 
 

 Symmetric problem:  THICKNESS 
 
 
 
 
 

 Note 
o Derivation with respect to z changes the symmetry 
o Derivation with respect to x does not change the symmetry 
o Solution ϕ has the same symmetry as the geometric  boundary condition 

PROBLEM w ϕ u 
Curvature S A A 

Angle of attack S A A 

Thickness A S S 



Thin airfoil theory: linearization 

 We can analyze the velocity in the upper and lower curve. 
 
 

 The distributed circulation is 
 
 

 and as a result 
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Thin airfoil theory: symmetric problem (ϕ) 

 In a symmetric problem (no curvature and no angle of attack) we expect the 
same pressure in the upper an lower surface. 
 Lift is zero 
 Drag is zero (potential flow) 



Thin airfoil theory: anti-symmetric problem (ϕ) 

 A profile whose thickness is much smaller than its chord can be considered thin, 
and if it is observed from the distance, the usual panel method would be seen as 
two lines of distributed vortex, very close one to the other. From the distance, 
they are so close, that they can be considered as an only line. 

 In this approximation the profile has zero thickness and the camber line will be 
one streamline in our problem. 
 



Thin airfoil theory: anti-symmetric problem (ϕ) 

 We need to impose the camber line to be a streamline. 
 Following the similar reasoning that led us from the real airfoil with upper and 

lower surface to the camber line to be an streamline, there is no much difference 
if we consider the vortex distribution to be placed in the chord line and not in the 
camber line. 
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Thin airfoil theory: anti-symmetric problem (ϕ) 

 The commonly used change of variable is 
 
 

 The problem will be decomposed into 

 ANGLE OF ATTACK  + CURVATURE 
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Thin airfoil theory: ANGLE OF ATTACK (flat plate) 

 The vortex strength is: 
 
 
 

 Thus, lift coefficient is  
 and as a result 
 
 
 
 Conclusions 

 cl=0 at trailing edge (Kutta condition requires pupper=plower) 
 cl=∞ at leading edge (“suction peak”) 

oSuction peak is not desirable because it can result in: 
1. Leading edge separation 
2. Very low pressure at leading edge which must rise towards trailing edge ⇒adverse pressure 

gradients ⇒ boundary layer separation 
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Thin airfoil theory: CURVATURE + ANGLE OF ATTACK 

 We can use a Fourier series for the vortex strength distribution: 
 

          where 
 
 
 and finally 
 
 
 
 Conclusions 

 In thin airfoil theory, the aerodynamic center is always at the quarter-chord c/4, 
regardless of the airfoil shape or angle of attack 
 

 Lift slope 
 

 Ideal angle of attack: is the angle of attack that makes disappear the leading edge 
singularity (A0=0) 
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Exercise 

1. Consider a thin symmetric airfoil at 1.5° angle of attack. Calculate lift and 
moment in the leading edge. 



Exercise 

2. For the NACA 2412 airfoil, the lift coefficient and moment coefficient about the 
quarter-chord at -6° angle of attack are -0.39 and -0.045 respectively. At 4 ° angle 
of attack, these coefficients are 0.65 and -0.037. Calculate the location of the 
aerodynamic center. 



Exercise 

3. Considering the following figures of lift coefficients along the chord (ξ=x/c) of 
three different profiles with chord c=1.2m. 

 Calculate: 
 Total lift coefficient 
 Location of the center of pressure 
 Moment coefficient with respect to the aerodynamic center 
 Lift and moment of the profile flying at 80 m/s with ρ=1.225 Kg/m3 



Exercise 

4. Given a profile with chord c and whose camber lines is defined by: 
  
 
 
 
 with ε=0.02 
 Calculate: 

 Ideal angle of attack (αi) 
 Angle of zero lift 
 cm(c/4) 
 cl(α=αi) 
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Exercise 

We can express the shape in using the angular variable 
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Exercise 

And the coefficients are: 
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Exercise 

Thus the requested answers are: 
 Ideal angle of attack (αi) 

 
 
 

 Angle of zero lift (αL=0) 
 
 
 
 
 

 Moment coefficient at chord/4 (cm(c/4)) 
 
 

 Lift coefficient with the ideal angle of attack cl(α=αi) 
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Airfoil boundary layer 

 The behavior of an airfoil close to the stall condition is governed by the influence 
of the boundary layer, which has the following important properties: 
 The pressure is constant along straight lines perpendicular to the profile. 
 The boundary layer thickness grows along the profile by two reasons: 

The boundary layer is decelerated due to the viscous stress. 
The momentum in the boundary layer is reduced to the need of advancing against an adverse 
pressure gradient. 

 The deceleration of the fluid due to an adverse pressure gradient is much more 
important close to the wall. 

 The boundary layer can be laminar or turbulent. 



Airfoil: laminar vs. turbulent 

 Laminar boundary layer: 
 The viscous stress is proportional to the derivative of the velocity, thus friction drag I 

much smaller 
 It is unstable. Small perturbations may trigger unstable modes and the turbulent 

regime will appear. 
 Low energy in the inner layers of the boundary layer. 

 Turbulent boundary layer: 
 Higher viscous stress and friction drag. 
 It is a stable mode 
 Higher energy in the inner layers of the boundary layer, yield to a better behavior 

against adverse pressure gradients. 
 
 
 
 
 
 

      a) Laminar   b) Turbulent 



Airfoil: stall 

 Stall mechanism: 
As much as we increase the angle of attack of an airfoil, as higher the negative suction 
peak will be in the upper surface close to the leading edge. But we need to recover the 
pressure in the stagnation point in the trailing edge, thus we will face an adverse 
pressure gradient that can trigger the boundary layer detachment. 

 Boundary layer evolution: 
 It starts in the stagnation point. 
 It is laminar until the suction peak (developing with favorable pressure gradient) 
 After the suction peak there are many options: 

1. Laminar boundary layer detachment without further reattachment. 
2. Laminar boundary layer detachment with further reattachment. 
3. Transition to turbulent  boundary layer with further detachment. 
4. Transition to turbulent boundary layer without further detachment. 
The suction peak depends mainly on the leading edge curvature. High curvature yields 
to high suction peaks, the extreme case is the flat plate, where the curvature is infinite 
and the suction peak as well. The opposite case is the cylinder, with a very moderated 
suction peak. 
 



Airfoil: stall 

 Reynolds effect in airfoil stall 
 If the boundary layer transits to turbulent just after the detachment it may reattach 

after a recirculation bubble. 
 If we increase the Reynolds we move backwards the transition point and we can 

reduce the bubble size until it disappears. 

 Airfoil stall characterization: 
The curvature in the leading edge fixes the suction peak, thus we can classify the 
airfoils based on their thickness and curvature: 
Thick airfoils 
Medium thickness airfoils 
Thin airfoils 
 



Airfoil: stall 

 Thick airfoils 
 Detachment happens near the trailing edge 



Airfoil: stall 

 Medium thickness airfoils 
 The boundary layer detaches in laminar regime, but it transits quickly to turbulent and 

reattaches to the airfoil after a short bubble. 
 If we increase the angle of attack, the detachment point approaches the high curvature 

leading edge, and the bubble explodes suddenly. 



Airfoil: stall 

 Thin airfoils 
 The boundary layer is very thin in the detachment point and it needs a certain distance 

to transit to turbulent. 



Split flap 

Simple flap 

Simple slotted flap 

Double slotted flap 

Fowler flap 

Airfoil: high lift devices 

 The typical aircraft mission requires very different values for cl from 0.4 to 3.2 
 Cruise condition: minimum drag 
 Take-off: high lift and low drag 
 Landing: high lift and high drag 

 
 
 
 
 
 

 How to increase maximum lift 
 Increase curvature 
 Increase lift surface (chord) 
 Boundary layer control: supply momentum in the low energy region of the boundary 

layer, or sucking this low energy boundary layer. 
 Decrease velocity on the suction peak (slat) 
 Energize the boundary layer (blow) 



Airfoil: high lift devices 

 Slat: 
 It is a small profile deployed in front of the leading edge. Its contribution to the lift is 

almost neglectable, but its circulation reduces the flow speed in the leading edge. 

 Slot: 
 It is a fixed channel that connects the upper and lower surfaces in the leading edge.  



Airfoil: high lift devices 

 The term (cos θ -I)  vanishes at the leading edge where θ = 0; and its absolute 
value reaches maximum at the trailing edge where θ = π. Thus, the portion of the 
mean camber line in the vicinity of the trailing edge powerfully influences the 
value of αL=0. 
 

 It is on this fact that the aileron as a lateral-control device and the flap as a high-
lift device are based. A deflection downward of a portion of the chord at the 
trailing edge effectively makes the ordinates of the mean camber line more 
positive in this region. 
 

 αL=0LO becomes more negative and the lift at a given geometric angle of attack is 
increased. 



Airfoil: high lift devices 

Effect of flap deflection on lift curve. 

The gain in lift at the given geometric angle 
of attack is shown as ΔCI 
If the rear portion of the trailing edge is  
deflected upward, an opposite displacement 
 of the lift curve results and the lift at a given  
geometric angle of attack is decreased. 



Airfoil: high lift devices 

Because all angles are small, it is sufficient to 
find the properties of a symmetrical airfoil at 
zero angle of attack with flap deflected. 
 
These may be added directly to the properties 
of the cambered airfoil at any angle of attack. 

If the leading and trailing edges are connected by a straight line and if this is treated as a 
fictitious chord line. the problem reduced to that of a cambered airfoil at an angle of attack 
α´ 



Airfoil: high lift devices 

The integrals must be evaluated in two parts: from the leading edge to the hinge 
line θc and from the hinge line to the trailing edge. Ao becomes  



Airfoil: high lift devices 

After we substitute in the limits and use the relations 

the value of Ao becomes  

In a similar manner, the values of An are found to be 



Airfoil: high lift devices 

These equations, when substituted into Equations yield incremental aerodynamic 
characteristics ΔCI and Δcmac due to the flap deflection: 

These equations show that the incremental values of ΔCI, Δcmac and αL=0.vary 
linearly with the flap deflection. 

The magnitudes are shown to be strong functions of θh , which is related to the 
distance Xh of the hinge line behind the leading edge by the expression 



Airfoil: high lift devices 

These equations, when substituted into Equations yield incremental aerodynamic 
characteristics ΔCI and Δcmac due to the flap deflection: 

These equations show that the incremental values of ΔCI, Δcmac and αL=0.vary 
linearly with the flap deflection. 

The magnitudes are shown to be strong functions of θh , which is related to the 
distance Xh of the hinge line behind the leading edge by the expression 



Airfoil: high lift devices 
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