Airfoils



Kutta condition (1)

L We remember that: o =cte
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f =0
The circulationis constantin any pointin the flow field.

» How can we obtain lift if we need circulationand the circulationin the upstream
farfield is zero?

Any body immersed in a free stream that can be treated as a potential fluid, shows
two separatix streamlines that touch the body in the stagnation points. Those
stagnation points define the upperand lower surface of the profile.

But in reality, the viscosity modifies the velocity profile and the pressure, thus the
flow detaches before the second stagnation point.




Kutta condition (ll)

d We have seen the cylinder example where many solutions are available
depending on the value of the circulationI’

 Similarapproachcan be appliedin a generic profile where many potential
solutionsfit the shape of the profile.
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= The only difference between these two cases a) and b) is their circulation I"



Kutta condition (lll)

d We know that the flow moves towards the lower pressure areas, and when it has
to overcome an adverse pressure gradient, it has to pay with its kinetic energy.

L If we had a flow as shown in the figure, the flow should bend in the corner A and
in theory, the velocity in this point should be infinite, and it would have to
strongly decelerate between A and B.

Kutta condition: the circulation around the profile is the one that
e eithersets a stagnation pointin the trailingedge

* orremoves the second stagnation point

0 We cannot have infinite velocity, so we cannot have infinite pressure gradient,
then, the upper and lower surface pressure in the trailingedge must be equal.



Kutta condition (I1V)

J The Kutta condition shows two different behaviours:

A -

a) b)

a) The trailing edge has two different tangents, thus the only option in order to avoid

having different velocities in the same point is that those velocities should be zero
(stagnation point)

b) The upper and lower surfaces have the same slope in the trailing edge and we can
have a non-zero velocity that is identical in the upper and lower surface.



Profile circulation

d We know that before the movement starts we do not have any circulation;and
accordingto the potential model, we cannot create circulation with the time
evolution.

L We can explainthe generation of the circulation because we start from a static
situationand we consider a fluid volume around the profile. But A closed curve
will remain closed and thus we can consider the circulationin this closed curve
will remain constantand equal to zero. However, we can split the curve in two,
and we can justify the existence of circulationaround the profile because we
have left an oppositecirculationin the downwash.
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Coefficients

 The pressure coefficientis:

X, Z,(X)]- p.,
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O If we consider the component of the pressure force that is perpendicularto the
incoming flow direction we obtain the same c,(X).

L The lift distributionis:

C (X) =C Plower surface (X) —C Pupper surface (X)

xlc




Coefficients

L The lift and lift coefficient are:
1
| = E,oUoozc C

1

¢ =~ Xx:c, (x)dx

O Aerodynamiccenter of a profile: is the chord-wise length about which the
pitching moment is independent of the lift coefficient and the angle of attack.

It is located in:
»Subsonic X =

»Supersonic X =
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Vortex panel method
 We replace the profile by a set of panels with distributed singularities (vortex)

o
i 3 2 1

- 4
-1
Original airfoil m-panels (m+1 nodes)

L The strength of the singularitiesis calculated so that the velocity in a certain
point of the panel (usually the center of the panel)is tangent to the panel.

L There are still more variables than equationsand we need to impose the Kutta
condition.

O Finallyour problem can be solved as a linear system.



Thin airfoil theory

0 Theleadingedge is the point at the front of the airfoil that has maximum
curvature.

O The trailingedge is defined similarly as the point of maximum curvature at the
rear of the airfoil.

O Chord lineis a straight line going from the leading edge (point of minimum
radius) to the trailing edge.

d Mean camber line is constituted by the midpointsof all airfoil cross-section
segments perpendicularto the chord.

L The thickness of an airfoil is measured perpendicularto the chord line.

angle of attack

chord line
o j\ camber line

relative wind f

max. thickness
max. camber



Thin airfoil theory

O The Laplace equationthat describes the potential of velocitiesiis:
RRONLR O
=+ =
ox>  oz°
 And the boundary conditions we have to apply are:

0

= Velocity tangent to the surface Z= Zp(X)

® (x,2) :di
® (x,2) dx

Z=Zp

= Kutta condition in the trailing edge
= Non-perturbed free flow in the infinite upwash:

®(x,z)—>U_x cuando x*+2° — oo

 The pressure coefficientis:

@ *(x,2)+D,%(x,2)
U 2

0

c,(x,z)=1-



Thin airfoil theory: hypothesis

Incompressible

Inviscid

Irrotational

Small angle of attack

Small airfoil thickness z=¢Z,(x) where a<x<b and e&<<1
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Small camber



Thin airfoil theory: linearization

1 Considering small thickness, curvature and angle of attack, we can suppose that
perturbations of the velocity are small too.
z=¢Z,(x) where a<x<b and &<<1
d(x,2)=U_x+¢(x,2)=U_x+5(¢)p'(x, 2)
0(1)
O After linearizingthis problem and neglecting terms of order & we conclude that

the boundary conditionsare applied on z=0; then we can apply superposition
principle.

O Finally, we obtainthe following:

0’ 0°
differential equation: ax(zp + azf =0
dz
and boundary conditions: M :d—p inz=0", a<x<b
. dx
o0 z=0"

¢X(X,0+)= (PX(X,O‘) inx=h, z=0

o(x,2) >0 inx*+2* >

- . x,0°) . .
O The pressure coefficient results: Cp(X,O‘)z —2% ina<x<b, z=0°

0



Thin airfoil theory: linearization

We have seen that the thin airfoil theory allows superposition of the potential of
velocities; thus we can linearly decompose any problem into two solutions.

> Anti-symmetricproblem: ANGLE OF ATTACK + CURVATURE

> Symmetric problem: THICKNESS
oROBLEW | w | ol u
Curvature S A A
Angle ofattack S A A
Thickness A S S
Note

O Derivation with respect to z changes the symmetry
O Derivation with respect to x does not change the symmetry
O Solution ¢ has the same symmetry as the geometric boundary condition



Thin airfoil theory: linearization

(d We can analyze the velocity in the upper and lower curve.

u(x,z)=U,, +0(x,2) ¢ (x,2)=—-2 u(x,z)
ox(x.2) p U,

d The distributedcirculationis
y(x)=0(x,0")-(x07)

uupper Ujower

and as a result

(x)_,0(x)
c,(x):zfJ :4U

o0 o0




Thin airfoil theory: symmetric problem (¢)

 In a symmetric problem (no curvature and no angle of attack) we expect the
same pressure in the upper an lower surface.
= Liftis zero
= Dragis zero (potential flow)



Thin airfoil theory: anti-symmetric problem (@)

L A profile whose thickness is much smaller than its chord can be considered thin,
and if it is observed from the distance, the usual panel method would be seen as
two lines of distributed vortex, very close one to the other. From the distance,
they are so close, that they can be considered as an only line.

O In this approximation the profile has zero thickness and the camber line will be
one streamline in our problem.

Vortex sheet on
camber line

= & @'&é‘@@@@%
— =) —
Thin airfoil §

¥(s)




Thin airfoil theory: anti-symmetric problem (@)

d We need to impose the camber line to be a streamline.

O Followingthe similar reasoning that led us from the real airfoil with upper and
lower surface to the camber line to be an streamline, there is no much difference

if we consider the vortex distributionto be placed in the chord lineand not in the
camber line.

U, a—% — Cw =0 a=Sina=tga
dx ) % 2z(x-¢)

-
vertical velocity induced
by the distributed vortex

z(x) = camber line
/ ) (X)dX
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Thin airfoil theory: anti-symmetric problem (@)
O The commonly used change of variableis

5:%(1—cos¢9) ., 0el07]

0 The problem will be decomposed into

ANGLE OF ATTACK + CURVATURE



Thin airfoil theory: ANGLE OF ATTACK (flat plate)

O The vortex strength is:

1+cosé

0)=2aU
7() N sin@

U

QO Thus, lift coefficientis ¢ (x)= Cooer —C
and as a result
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*%* Conclusions

v" ¢,=0 at trailing edge (Kutta condition requires Pupper=Piower)
v’ ¢= at leading edge (“suction peak”)

OSuction peak is not desirable because it can result in:

1. Leading edge separation

2. Verylow pressure at leading edge which must rise towards trailing edge =>adverse pressure
gradients = boundary layer separation



Thin airfoil theory: CURVATURE + ANGLE OF ATTACK

L We can use a Fourier series for the vortex strength distribution:

w0 I 1 J‘ - dz do
y(0)=2u, A01+Si$1029+ZAnsin(n9) where zhdx C
— —— ! 2 (= dz
i ;Ir?élglgg‘eavtvtiatsk camberedc\gntribution_ An = ;J'O &COS(n 60 )d 00

andfinally ¢, = 27(a—a, )

w

Cm% _Cmac _Z(AZ_AI)
1 ¢~ dz 1

o g :—;L &(COSQO —1)d90 :a—AO —EAl
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*%* Conclusions

v"In thin airfoil theory, the aerodynamic center is always at the quarter-chord c/4,
regardless of the airfoil shape or angle of attack

dc,

da

v Ideal angle of attack: is the angle of attack that makes disappear the leading edge
singularity (Ay=0)

v’ Lift slope =2r




Exercise

1. Considera thin symmetric airfoil at 1.5° angle of attack. Calculateliftand
moment in the leadingedge.



Exercise

2. Forthe NACA 2412 airfoil, the lift coefficient and moment coefficient about the

quarter-chord at -6° angle of attackare -0.39 and -0.045 respectively. At 4 ° angle
of attack, these coefficients are 0.65 and -0.037. Calculatethe location of the

aerodynamiccenter.



Exe

rcise

3. Consideringthe following figures of lift coefficients along the chord (£=x/c) of
three different profiles with chord c=1.2m.

Calculate:

A

3/4

= Total lift coefficient
= Location of the center of pressure
|

Moment coefficient with respect to the aerodynamic center

Lift and moment of the profile flying at 80 m/s with p=1.225 Kg/m?3

c/(&) a) 4 ci(€) b) * c(§) c)

o6 L c(&)=(916)(1-&)

()

0 »



Exercise

4. Given a profile with chord ¢ and whose camber lines is defined by:

2
z(x)=ec|1-16 L o tox 1
c 4 2 C 4
0 2
z(x)=ec 10 §+£) Cooi.x d
9\c 4 4 ¢ 2
with €=0.02

Calculate:
» |deal angle of attack (¢;)

= Angle of zero lift

Cm(c/4)
" CGlo=a)



Exercise

We can express the shapein using the angularvariable

-

B 2
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Exercise

And the coefficients are:

= a—m—I——dﬁ cx——-j/gidﬁ gzdﬁ
%0 dx /3 dXx
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Exercise

Thus the requested answers are:
= Ideal angle of attack (¢) A, = ——J —d6’ =0

s

= Angle of zero lift (e =)

1 ¢rdz 1 8¢ 11 ) 116(11
=——| —(cosO,-1)dO, =a—A, ——A =—|8Jy3—"—"7m |-——| —=x-2J3 |=
Lo nde( o~ 1O =a—A S A 9;z(f 3”] 29;;(3” ‘Fj

Q; - ~ 9] -~
Q; AEI.

_ 165[117, 5[}
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=  Moment coefficient at chord/4 (Crn(cray)

T
cC. = —(A — A )=0.04
= Lift coefficient with the ideal angle of attack ¢,(a=«;)

Cy :7[(2A0 +A1)



Airfoil boundary layer

L The behaviorof an airfoil close to the stall conditionis governed by the influence

of the boundarylayer, which has the following important properties:

= The pressure is constant along straight lines perpendicular to the profile.

= The boundary layer thickness grows along the profile by two reasons:

»The boundary layer is decelerated due to the viscous stress.

»The momentum in the boundary layer is reduced to the need of advancing against an adverse

pressure gradient.

= The deceleration of the fluid due to an adverse pressure gradient is much more

important close to the wall.

* The boundary layer can be laminar or turbulent.

pL<pr<py

P3

200 W/W?ﬂim»m\ _/
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Stall due 1o
fMow separation
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= |ift slope
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Airfoil: laminar vs. turbulent

O Laminarboundary layer:

The viscous stress is proportional to the derivative of the velocity, thus friction drag |
much smaller

It is unstable. Small perturbations may trigger unstable modes and the turbulent
regime will appear.

Low energy in the inner layers of the boundary layer.
O Turbulentboundary layer:

= Higher viscous stress and friction drag.
" |tis astable mode

Higher energy in the inner layers of the boundary layer, yield to a better behavior
against adverse pressure gradients.

a b

a) Laminar b) Turbulent



Airfoil: stall

O Stall mechanism:
As much as we increase the angle of attack of an airfoil, as higher the negative suction
peak will be in the upper surface close to the leading edge. But we need to recover the
pressure in the stagnation point in the trailing edge, thus we will face an adverse
pressure gradient that can trigger the boundary layer detachment.

 Boundary layer evolution:
= |t starts in the stagnation point.
" |t is laminar until the suction peak (developing with favorable pressure gradient)

= After the suction peak there are many options:

1.
2.
3.
4.

Laminar boundary layer detachment without further reattachment.
Laminar boundary layer detachment with further reattachment.
Transition to turbulent boundary layer with further detachment.
Transition to turbulent boundary layer without further detachment.

The suction peak depends mainly on the leading edge curvature. High curvature yields
to high suction peaks, the extreme case is the flat plate, where the curvature is infinite
and the suction peak as well. The opposite case is the cylinder, with a very moderated

suction peak.



Airfoil: stall

1 Reynolds effect in airfoil stall

= |f the boundary layer transits to turbulent just after the detachment it may reattach
after a recirculation bubble.

= |f we increase the Reynolds we move backwards the transition point and we can
reduce the bubble size until it disappears.

L Airfoil stall characterization:

The curvature in the leading edge fixes the suction peak, thus we can classify the
airfoils based on their thickness and curvature:

=Thick airfoils
»Medium thickness airfoils
= Thin airfoils



Airfoil: stall

L Thick airfoils

= Detachment happens near the trailing edge




Airfoil: stall

d Medium thickness airfoils

The boundary layer detaches in laminar regime, but it transits quickly to turbulent and
reattaches to the airfoil after a short bubble.

If we increase the angle of attack, the detachment point approaches the high curvature
leading edge, and the bubble explodes suddenly.

A a b
—<p —Cp c
-1 Ve v/
C A d a
—¢ —Cp
- > x

-1 Xle x/c¢




Airfoil: stall

L Thin airfoils

= The boundary layer is very thin in the detachment point and it needs a certain distance
to transit to turbulent.




Airfoil: high lift devices

L The typicalaircraft mission requires very different values for ¢, from 0.4 to 3.2

= Cruise condition: minimum drag
= Take-off: high lift and low drag
= Landing: high lift and high drag

0.1

L How to increase maximum lift
= Increase curvature

* |ncrease lift surface (chord)

C__——__‘__\i—\‘ Split flap
qSimple flap

CY\Simple slotted flap

. < 7=_Double slotted flap

N\

Fowler flap

ﬂ(‘;

= Boundary layer control: supply momentum in the low energy region of the boundary
layer, or sucking this low energy boundary layer.

= Decrease velocity on the suction peak (slat)

* Energize the boundary layer (blow)



Airfoil: high lift devices

O Slat:

It is a small profile deployed in front of the leading edge. Its contribution to the lift is
almost neglectable, but its circulation reduces the flow speed in the leading edge.

O Slot:

It is a fixed channel that connects the upper and lower surfaces in the leading edge.

A
Lift Coeffecient
33— — — — —

Airfoil with
slats and flaps

Airfoil with
flaps
Q. Plain airfoi

il P

Chord

241+— — — —

C.
15 deg. 30 deg. Airstream Incidence (Angle of Attack)



Airfoil: high lift devices

O Theterm (cos O -I) vanishes at the leading edge where 8 = 0; and its absolute
value reaches maximum at the trailingedge where 6 = . Thus, the portion of the
mean camber line in the vicinity of the trailingedge powerfully influences the
value of a ..

O Itis on this fact that the aileron as a lateral-control device and the flap as a high-
lift device are based. A deflection downward of a portion of the chord at the

trailing edge effectively makes the ordinates of the mean camber line more
positive in this region.

U a,_,LO becomes more negative and the lift at a given geometric angle of attackis
increased.



Airfoil: high lift devices

Cy

Flap

deﬂected\\
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Effect of flap deflection on lift curve.

The gainin lift at the given geometric angle
of attack is shown as ACI

If the rear portion of the trailingedge is
deflected upward, an opposite displacement
of the lift curve results and the lift at a given
geometric angle of attack is decreased.



Airfoil: high lift devices

B — Because all angles are small, it is sufficient to
V. _,._’ — ——  find the properties of a symmetrical airfoil at
_;...i L.E. \Tlfin zero angle of attack with flap deflected.

These may be added directly to the properties
of the cambered airfoil at any angle of attack.

If the leading and trailingedges are connected by a straight line and if this is treated as a
fictitious chord line. the problem reduced to that of a cambered airfoil at an angle of attack

Ve

a



Airfoil: high lift devices

| 7 dz

A= a'——| —db
w90 dx
A= 2 1T=—d£nc:r:::m{-iiaft‘fi
T Y0 dx

The integrals must be evaluated in two parts: from the leading edge to the hinge
line 6, and from the hinge line to the trailing edge. A0 becomes

8, Fid
- A A
mlI-E J, @l E Jg



Airfoil: high lift devices

After we substitute in the limits and use the relations

h ok _
I-E E
n"’*‘ﬁ ="M
E
the value of Ao becomes
A= 1}(11'*9,,)
m

In a similar manner, the values of A are found to be

_ 27msinné,
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Airfoil: high lift devices

These equations, when substituted into Equationsyield incremental aerodynamic
characteristics AC,and Ac,,,. due to the flap deflection:

Ac,=2[(m—0,) +sinf,] 7

AC,,c = [$5in 6,(cos 6, — 1)] 7

Aa,, = —Ac,2m = —[(m — 6,) + sin 0,] n/m

These equationsshow that the incremental values of ACI, Acmac and a,_,.vary
linearly with the flap deflection.

The magnitudes are shown to be strong functions of 8, , which is related to the
distance X;, of the hinge line behind the leading edge by the expression

x, = 3c(l —cos@,)



Airfoil: high lift devices

These equations, when substituted into Equationsyield incremental aerodynamic
characteristics AC,and Ac,,,. due to the flap deflection:

Ac,=2[(m—0,) +sinf,] 7

AC,,c = [$5in 6,(cos 6, — 1)] 7

Aa,, = —Ac,2m = —[(m — 6,) + sin 0,] n/m

These equationsshow that the incremental values of ACI, Acmac and a,_,.vary
linearly with the flap deflection.

The magnitudes are shown to be strong functions of 8, , which is related to the
distance X;, of the hinge line behind the leading edge by the expression

x, = 3c(l —cos@,)



Airfoil: high lift devices
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