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2 DANIEL MACÍAS CASTILLO

Preface

This is not a complete set of notes for Algebraic Structures. Part II of the course,
concerning Ring Theory, is not discussed in these notes.

However, these notes do contain all of the relevant material on Group Theory that will
be covered in Part I of the course. They may thus be used as a guide and main reference
for this part of the course. Some of the specific results, proofs, examples, etc., that appear
in these notes may not be explicitly discussed during the lectures, due to obvious time
limitations.

At any given moment during the course, I would recommend reading ahead of whichever
point the lectures have gotten up to. In this way, the next lectures will become easier to
follow, and one may ask any relevant question that may arise through this reading.

I have included many relevant exercises right below most of the results and definitions
that occur in the notes. I have also added long lists of exercises at the end of each section.

These lists of exercises do not, in any way, intend to replace the official exercise sheets
for the course that will be provided. You should give priority to the exercises that appear
in the exercise sheets.

However, if you feel that you do not properly understand some part of the course (or even
if you just wish to study some part of the course more in depth), then you may certainly
use the exercises found in the corresponding parts of these notes to think further about the
relevant concepts.

The main reference for the writing of these notes has been the book [2] of Dummit and
Foote, which we have occasionally complemented with alternative books such as [1].
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ALGEBRAIC STRUCTURES 3

Part I: Group Theory

From the moment you started studying and handling sets such as N := {1, 2, 3, . . .} and
Z := {. . . ,−3,−2,−1, 0, 1, 2, 3, . . .}, you had encountered a first level of abstraction: the
usual jump from considering three oranges, or three pens, to considering the number 3;
the agreement that, since adding a new orange to an original two oranges results in three
oranges, we may write 2 + 1 = 3.

You may think of group theory, and later also of ring theory, as a second level of ab-
straction. Consider for example Fermat’s Little Theorem, which states that if p is a prime
number and a is an integer with p - a, then

(1) ap−1 ≡ 1 (mod p).

Clearly, this result has nothing to do with oranges. The more surprising fact is that this
result has nothing to do with integers, or more generally with numbers. Instead, it will be
seen to be a direct consequence of Lagrange’s Theorem 2.61.

It is therefore interesting to try to consider the sets Lagrange’s Theorem applies to, all
at once, since we will get information about many different kinds of mathematical objects.
This is what we meant by a second level of abstraction: isolating the essential properties of
the set Z and of its natural binary operations, which are really responsible for the truth of
the important theorems of arithmetic.

In fact, at some point you may have felt that there was some cheating involved in the first
level of abstraction. It is not clear that there is such a thing as zero oranges, or as minus
three oranges. The mathematicians of ancient Greece, who are considered responsible for
this first jump, did not have a number 0, or any negative numbers. In other words, they
could work with N and with its binary operations + and ·, but the notion of working with
Z would have seemed nonsensical to them. Why do we want to work with Z then?

The real reason we need to do this is that the pair (N,+) does not constitute a group,
while the pair (Z,+) does. In a way, (Z,+) is the group generated by the set N with its
binary operation +. This is what justifies its definition. We can then apply all of the
results of group theory to (Z,+), and from them deduce the corresponding facts about the
elements of N ⊂ Z.

In a similar way, the triple (N,+, ·) does not constitute a ring, while (Z,+, ·) does.
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4 DANIEL MACÍAS CASTILLO

1. Introduction to group theory and examples

1.1. Definition and first properties.

1.1.1. Binary operations. We recall that the cartesian product of two sets S and T is given
by

S × T := {(s, t) : s ∈ S, t ∈ T}.
In particular one has S × S = {(s, s′) : s, s′ ∈ S}.

Definition 1.1. Let S be a set.

(i) A binary operation ? on S is a function

? : S × S → S.

We often abbreviate ?((s, s′)) to s ? s′.
(ii) Let T be a subset of S. We say that T is closed under ? if the restriction of ? to

T × T ⊆ S × S

defines a binary operation on T .
In other words, T is closed under ? if t ? t′ belongs to T for every t and t′ in T .

(iii) The operation ? is associative if

s ? (s′ ? s′′) = (s ? s′) ? s′′

for all s, s′, s′′ ∈ S.
(iv) The operation ? is commutative if

(2) s ? s′ = s′ ? s

for all s, s′ ∈ S.
(v) An element s of S is said to ‘commute’ with an element s′ of S (with respect to ?)

if the equality (2) is valid.

Remark 1.2. It is very easy to prove that, if ? is associative (resp. commutative) as a
binary operation on S and T ⊆ S, then ? is associative (resp. commutative) as a function on
T×T ⊆ S×S. In particular, if T is closed under ?, then ? is associative (resp. commutative)
as a binary operation on T .

Examples 1.3.
(i) The sum + and the multiplication · both are binary operations on Z, and both are
associative and commutative.

The subset 2Z := {2a : a ∈ Z} of even integers is closed under + because

2a+ 2b = 2(a+ b),

and it is closed under · because

(2a) · (2b) = 2(2ab).

The subset 2Z+ 1 := {2a+ 1 : a ∈ Z} is closed under · because

(2a+ 1) · (2b+ 1) = 2(2ab+ a+ b) + 1.
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ALGEBRAIC STRUCTURES 5

However, 2Z+ 1 is not closed under + because

1 + 1 = 2 /∈ 2Z+ 1.

(ii) The substraction − is a binary operation on Z, but it is not associative because

0− (0− 1) = 1 6= −1 = (0− 0)− 1,

and it is not commutative because

1− 0 = 1 6= −1 = 0− 1.

Examples 1.4. We fix an integer n 6= 0 .For any integer a, we write [a]n or an for the class
a+ nZ of a modulo n. We often omit n from this notation when it is fixed and clear from
context, and simply write [a] or a. (At some point we will simply drop the bracket and just
write a.) We recall that one then has

Z/nZ = {[a] : a ∈ Z}.
(i) We define a binary operation + on Z/nZ by setting

[a] + [b] := [a+ b].

This is a well-defined function

Z/nZ× Z/nZ→ Z/nZ
because if [a] = [a′] and [b] = [b′] then a = a′ + na′′ and b = b′ + nb′′ so

[a] + [b] = [a+ b] = [a′ + na′′ + b′ + nb′′] = [a′ + b′ + n(a′′ + b′′)] = [a′ + b′] = [a′] + [b′].

(ii) We can define a binary operation · on Z/nZ by setting

[a] · [b] := [a · b].
This is a well-defined function

Z/nZ× Z/nZ→ Z/nZ
because if [a] = [a′] and [b] = [b′] then a = a′ + na′′ and b = b′ + nb′′ so

[a] · [b] = [a · b] = [(a′+na′′) · (b′+nb′′)] = [a′ · b′+n(a′b′′+a′′b′+na′′b′′)] = [a′ · b′] = [a′] · [b′].

Exercise 1.5. Prove that the binary operations + and · on Z/nZ are both associative and
commutative.

1.1.2. The definition.

Definition 1.6. A group is a pair (G, ?) comprising a set G and a binary operation ? on
G that satisfy the following axioms:

(G1) ? is associative.
(G2) There exists an element e of G, the ‘identity element’ of G, with the property that

g ? e = g = e ? g

for every g ∈ G.
(G3) For every element g of G, there exists an associated element g−1 of G, the ‘inverse

element’ of g, with the property that

g ? g−1 = e = g−1 ? g.
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6 DANIEL MACÍAS CASTILLO

Notation 1.7. We often omit ? when no ambiguity is possible and simply say that the set
G is a group.

Definition 1.8.
(i) A group (G, ?) is ‘abelian’, or commutative, if ? is commutative.
(ii) A group (G, ?) is finite if G is finite.

Examples 1.9.
(i) We know from Example 1.3(ii) that (Z,−) is not a group, because − is not associative.
(ii) The pair (Z,+) is an abelian group, with identity element 0 and inverse element −a for
each a ∈ Z. We often abbreviate (Z,+) to Z.

However, neither of the pairs (Z, ·) or (Z\{0}, ·) are groups, because the identity element
would have to be 1, but there is no integer a satisfying 2 · a = 1, so 2 cannot have an
associated inverse element.
(iii) Let F be Q, R or C. The pair (F,+) is an abelian group, with identity element 0 and
inverse element −q for each q ∈ F . We often abbreviate (F,+) to F .

The pair (F, ·) is not a group, because the identity element would have to be 1, but there
is no q in F satisfying 0 · q = 1, so 0 cannot have an associated inverse element.

The pair (F \ {0}, ·) is an abelian group, with identity element 1 and inverse element q−1

for each q ∈ F \ {0}. We often abbreviate (F \ {0}, ·) to F ∗.
(iv) Any vector space V together with its addition operation + is an abelian group.
(v) Fix an integer n 6= 0. The class [0] is the identity element of (Z/nZ,+) because

[a] + [0] = [a+ 0] = [a] = [0 + a] = [0] + [a]

and, for any [a] in Z/nZ, we have the associated inverse element [−a], because

[a] + [−a] = [a+ (−a)] = [0] = [(−a) + a] = [−a] + [a].

We set 0 := [0] and −[a] := [−a]. We often abbreviate (Z/nZ,+) to Z/nZ. By Exercise
1.5, we know that Z/nZ is a finite abelian group.
(vi) Fix an integer n 6= 0, 1,−1.

(a) The pair (Z/nZ, ·) is never a group: the identity element would have to be [1], but
if [0] · [a] = [1] then [1] = [0], which is always false. So [0] cannot have an inverse
element.

(b) The pair ((Z/nZ) \ {[0]}, ·) is a group if and only if |n| is a prime number (see
Exercise 1.10 below).

(c) We may define a subset

(Z/nZ)× := {[a] : there exists b ∈ Z such that [a] · [b] = [1]}
of (Z/nZ) \ {0}. We see first that (Z/nZ)× is closed under ·: indeed, if [a] · [b] = [1]
and [a′] · [b′] = [1] then

([a] · [a′]) · ([b′] · [b]) = (([a] · [a′]) · [b′]) · [b] = ([a] · ([a′] · [b′])) · [b] = ([a] · [1]) · [b] = [a] · [b] = [1],

so [a] · [a′] belongs to (Z/nZ)×. Here we have used that · is associative, by Exercise
1.5.

The class [1] is the identity element of ((Z/nZ)×, ·) because

[a] · [1] = [a · 1] = [a] = [1 · a] = [1] · [a].
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ALGEBRAIC STRUCTURES 7

Also, by the definition definition of (Z/nZ)×, and the fact that · is commutative
by Exercise 1.5, we know that every element of (Z/nZ)× has an associated inverse
element.

We set 1 := [1]. We often abbreviate ((Z/nZ)×, ·) to (Z/nZ)×. We note once
again that, by Exercise 1.5, we know that · is associative and commutative. There-
fore (Z/nZ)× is a finite abelian group.

(vii) Any set with cardinality equal to 1 is clearly a group. We identify all such groups and
refer to them as ‘the trivial group’. We say that a group is ‘non-trivial’ if it has cardinality
greater than 1.

Exercise 1.10. Fix an integer n 6= 0, 1,−1.

(i) Prove that, if p is a prime number, then (Z/pZ)× = (Z/pZ) \ {[0]}.
(ii) Prove that, if an integer m 6= ±1,±n divides n, then the element [m] of (Z/nZ)\{[0]}

cannot have an associated inverse element with respect to ·.
(iii) Justify claim (vi)(b) of Examples 1.9.
(iv) Show that (Z/nZ)× = {[a] : (a, n) = 1}.
(v) Use the Euclidean Algorithm to find [13]−1

20 .

1.1.3. First properties. You may have noticed that above we have referred to the identity
element of a group, or the inverse element of a given element of a group. We now justify
this terminology by proving their uniqueness.

Proposition 1.11. Let (G, ?) be a group.

(i) There is a unique identity element e of G satisfying condition (G2).
(ii) If g ? f = g for every g ∈ G then f = e.
(iii) If f ? g = g for every g ∈ G then f = e.
(vi) If g1 ? g3 = g2 ? g3 then g1 = g2.
(v) If g1 ? g2 = g1 ? g3 then g2 = g3.
(vi) For each g ∈ G, there is a unique inverse element g−1 of g satisfying condition (G3).

(vii) (g−1)−1 = g for all g ∈ G.
(viii) If g ? g′ = e then g′ = g−1.

(ix) If g′ ? g = e then g′ = g−1.
(x) (g ? j)−1 = j−1 ? g−1 for all g, j ∈ G.
(xi) G is abelian if and only if (g ? j)−1 = g−1 ? j−1 for all g, j ∈ G.

Proof. If e and e′ are identity elements of G then

e = e ? e′ = e′,

where the first equality follows from applying (G2) to e′ and the second equality from
applying (G2) to e. This proves claim (i).

Claim (ii) holds because f = e ? f = e.
Claim (iii) holds because f = f ? e = e.
Claim (iv) holds because

g1 = g1 ? e = g1 ? (g3 ? g
−1
3 ) = (g1 ? g3) ? g−1

3 = (g2 ? g3) ? g−1
3 = g2 ? (g3 ? g

−1
3 ) = g2 ? e = g2.

Claim (v) holds because

g2 = e ? g2 = (g−1
1 ? g1) ? g2 = g−1

1 ? (g1 ? g2) = g−1
1 ? (g1 ? g3) = (g−1

1 ? g1) ? g3 = e ? g3 = g3.
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8 DANIEL MACÍAS CASTILLO

Fix g ∈ G. If g ? g′ = e and g ? g′′ = e then in particular g ? g′ = g ? g′′. Claim (v) thus
implies that g′ = g′′. This proves claim (vi).

The equality in condition (G3) is symmetric, so it states that any element g of G is the
inverse (g−1)−1 of g−1, as required to prove claim (vii).

Claim (viii) holds because if g ? g′ = e = g ? g−1 then claim (v) implies that g′ = g−1.
Claim (ix) holds because if g′ ? g = e = g−1 ? g then claim (iv) implies that g′ = g−1.
Claim (x) holds follows from applying claim (viii) to the equality

(g ? j) ? (j−1 ? g−1) = ((g ? j) ? j−1) ? g−1 = (g ? (j ? j−1)) ? g−1 = (g ? e) ? g−1 = g ? g−1 = e.

We finally consider claim (xi). By claim (x), we must prove that G is abelian if and only
if j−1 ? g−1 = g−1 ? j−1 for all g, j ∈ G. It is clear that if G is abelian, then the latter
condition holds.

On the other hand, if j−1 ? g−1 = g−1 ? j−1 then

g ? j = (g−1)−1 ? (j−1)−1 = (j−1 ? g−1)−1 = (g−1 ? j−1)−1 = (j−1)−1 ? (g−1)−1 = j ? g,

so G is abelian. Here the first and fifth equalities follow from claim (vii) while the second
and fourth equalities follow from claim (x).

�

Notation 1.12.
(i) In the sequel, for an abstract group G, we will mostly stop using the very distinctive
notation ? for its binary operation and, unless explicitly stated otherwise, this operation
will be denoted by ·. In addition, the identity element of (G, ·) will be denoted by 1 instead
of by e. In fact, we will often drop the binary operation completely from certain notations,
so for instance we will feel justified in simply writing gg′ rather that g · g′ for the evaluation
under · of a pair of elements g, g′ of G.

Sometimes, if the group G is abelian and we believe there is a pedagogical advantage
to this, we will instead write + for its binary operation. In any such cases, we will always
denote by 0 the identity element of (G,+) and write −g for the inverse element of any
g ∈ G.
(ii) Now that we are familiar with the associative property of binary operations, we will
often stop writing brackets around pairs of elements of a group G whenever no ambiguity is
possible. In fact, by an easy induction argument, the associative property of · implies that
for any finite family g1, g2, . . . , gn−1, gn of elements of G, the evaluation

(3) g1g2 . . . gn−1gn ∈ G
is independent of how the expression is bracketed, and thus we will simply use this unbrack-
eted notation. We will also sometimes write

∏i=n
i=1 gi for the expression (3).

In particular, for an element g ∈ G and a natural number n ∈ N we will write gn for the
element gg . . . gg, where g occurs n times. We also set g−n := (g−1)n and g0 := 1.

Example 1.13. It is clear from the associative property that, for any g1, g2, g3, g4 ∈ G, one
has

((g1g2)g3)g4 = (g1g2)(g3g4) = g1(g2(g3g4)) = g1((g2g3)g4) = (g1(g2g3))g4,

so we do not need to distinguish between any of these expressions

Exercise 1.14. Show that g−n = (gn)−1.
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ALGEBRAIC STRUCTURES 9

1.1.4. Orders and group tables. Recalling Fermat’s Little Theorem (1), we see that it is a
statement concerning an exponent n for which elements all a of (Z/pZ)× satisfy an = 1 in
(Z/pZ)×. Specifically, it states that n = p− 1 is such an exponent.

In a general group G and for an arbitrary element g in G, we will be interested in studying
the exponents n for which gn is equal to the identity element of G, or whether such an n
exists. It is clear that if gn = 1 and n | m, then gm = (gn)m/n = 1m/n = 1. For this reason,
in the following definition, we associate to g the smallest such exponent, if one exists.

Definition 1.15.
(i) The ‘order’ of a finite group G is its cardinality, which we shall always denote by |G| ∈ N.
We thus may say that a finite group ‘has finite order’. Otherwise we say that it ‘has infinite
order’.
(ii) Let g be an element of a group G. Then the ‘order of g’ is the smallest natural number
n with the property that gn = 1, if such a number exists. In particular we then say that g
‘has finite order’. If no such number exists, then we say that the order of g is the symbol
∞, and that g ‘has infinite order’.

We denote by o(g) or by |g| the order of g, so that this is an element of N ∪ {∞}.

Remark 1.16. Clearly one has o(g) = 1 if and only if g = 1.

Exercise 1.17.
(i) Prove that every element of Z, except for the identity 0, has infinite order. Prove that
every element of Q, except for the identity 0, has infinite order.
(ii) In Q∗, show that one has

o(q) =


1, q = 1,

2, q = −1,

∞, q 6= 1,−1.

Show that the same equality holds in R∗. Can you find an element z 6= 1,−1 of C∗ that
has finite order?
(iii) In Z/9Z, show that

o([0]) = 1, o([1]) = 9, o([2]) = 9, o([3]) = 3, o([4]) = 9, o([5]) = 9, o([6]) = 3, o([7]) = 9, o([8]) = 9.

(iv) Recall from Exercise 1.10(i) that (Z/pZ)× = (Z/pZ) \ {[0]} for any prime number p.

(a) In (Z/3Z)×, show that o([1]) = 1 and o([2]) = 2.
(b) In (Z/5Z)×, show that o([1]) = 1, o([2]) = 4, o([3]) = 4 and o([4]) = 2.
(c) In (Z/7Z)× show that o([2]]) = 3 and that o([3]) = 6.

Definition 1.18. Let G be a finite group of order n. Fix a bijection between G and
{1, . . . , n} and use it to write the elements of G as

G = {g1, g2, . . . , gn},

ensuring that g1 = 1 (the identity element). The ‘group table’ of G is the n×n-matrix with
coefficients in G whose (i, j)-entry is the element gigj of G.

Remark 1.19. The group table of G is symmetric if and only if G is abelian!
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Exercise 1.20.
(i) Let G = {g1, g2} (with g1 = 1) be any group of order 2. Write down the group table of
G.
(ii) Let G = {g1, g2, g3} (with g1 = 1) be any group of order 3. Write down the group table
of G.

1.1.5. The direct product of two groups. As we know, to an arbitrary pair of sets S and T
one can associate naturally a new set, the cartesian product S×T . It will be very useful to
observe that to an arbitrary pair of groups G and J we can also naturally associate a new
group, simply by giving the obvious structure to the set G× J as follows.

Definition 1.21. If (G, ?G) and (J, ?J) are groups, we define their ‘direct product’ to be
the pair (G× J, ?G×J), where ?G×J is the binary operation

(G× J)× (G× J)→ G× J
on G× J defined by

(g, j) ?G×J (g′, j′) := (g ?G g
′, j ?J j

′).

Lemma 1.22. The following claims are valid.

(i) The direct product of two groups G and J is a group.
(ii) The direct product of G and J is abelian if and only if both G and J are abelian.
(iii) The direct product of G and J is finite if and only if both G and J are finite.

Proof. To prove claim (i) we first note that the binary operation ? := ?G×J is associative
because

(g, j) ? ((g′, j′) ? (g′′, j′′)) =(g, j) ? (g′ ?G g
′′, j′ ?J j

′′)

=(g ?G (g′ ?G g
′′), j ?J (j′ ?J j

′′))

=((g ?G g
′) ?G g

′′, (j ?J j
′) ? j′′)

=(g ?G g
′, j ?J j

′) ? (g′′, j′′)

=((g, j) ? (g′, j′)) ? (g′′, j′′).

Here the third equality holds because both ?G and ?J are associative.
If eG is the identity of G and eJ is the identity of J then

eG×J := (eG, eJ) ∈ G× J
is the identity element because

(g, j) ? (eG, eJ) = (g ?G eG, j ?J eJ) = (g, j)

for every (g, j) ∈ G×J , and because we may apply Proposition 1.11 (ii) to these equalities.
Fix an element (g, j) of G× J . We claim that

(g, j)−1 := (g−1, j−1) ∈ G× J
is the inverse of (g, j). Indeed, this follows from applying Proposition 1.11 (viii) to the
equality

(g, j) ? (g−1, j−1) = (g ?G g
−1, j ?J j

−1) = (eG, eJ) = eG×J .

This completes the proof of claim (i).
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To prove claim (ii) we first assume that both G and J are abelian. Then for any
(g, j), (g′, j′) ∈ G× J one has

(g, j) ? (g′, j′) = (g ?G g
′, j ?J j

′) = (g′ ?G g, j
′ ?J j) = (g′, j′) ? (g, j),

so G× J is abelian.
We now assume that G× J is abelian. Then for any g, g′ ∈ G one has

(g ?G g
′, eJ) = (g, eJ) ? (g′, eJ) = (g′, eJ) ? (g, eJ) = (g′ ?G g, eJ),

so we must also have that g ?G g
′ = g′ ?G g. This proves that G is abelian.

Similarly, for any j, j′ ∈ J one has

(eJ , j ?J j
′) = (eG, j) ? (eG, j

′) = (eG, j
′) ? (eG, j) = (eG, j

′ ?J j),

so we must also have that j ?J j
′ = j′ ?J j, and thus that J is abelian. This concludes the

proof of claim (ii).
Claim (iii) is trivial, since we know that the set G× J is finite if and only if both of the

sets G and J are finite. �

1.2. Examples. In this section we give further examples of groups, some of which will play
crucial roles in later sections.

1.2.1. Symmetric groups. For a non-empty set Ω, a permutation of Ω is a bijective function
that has Ω as both its domain and its codomain. We write SΩ for the set of permutations
of Ω.

We define a binary operation ◦ on SΩ through the composition of functions. Explicitly,
for a pair (σ, τ) in SΩ × SΩ, the function

σ ◦ τ : Ω→ Ω

is defined by
(σ ◦ τ)(ω) := σ

(
τ(ω)

)
for every ω ∈ Ω. It is clear that, since both σ and τ are bijective, the composition σ ◦ τ is
also bijective, and hence that σ ◦ τ is a permutation in SΩ.

The operation ◦ is associative because composition of functions is always associative:

(ρ ◦ (σ ◦ τ))(ω) = ρ((σ ◦ τ)(ω)) = ρ(σ(τ(ω))) = (ρ ◦ σ)(τ(ω)) = ((ρ ◦ σ) ◦ τ)(ω)

for every ρ, σ, τ ∈ SΩ and every ω ∈ Ω.
We have the identity permutation, denoted by 1Ω or idΩ (or simply 1 or id if Ω is clear

from context), and defined by 1Ω(ω) = ω for each ω ∈ Ω. Clearly

(1Ω ◦ σ)(ω) = σ(ω) = (σ ◦ 1Ω)(ω)

for any σ ∈ SΩ.
Since every permutation σ ∈ SΩ is by definition bijective, it has a two-sided inverse

(bijective) function σ−1 : Ω→ Ω for which

σ ◦ σ−1 = 1Ω = σ−1 ◦ σ.
This function is thus a permutation σ−1 which is the inverse element of σ.

Definition 1.23. For any given non-empty set Ω, the group (SΩ, ◦) is called the ‘symmetric
group on Ω’.
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Exercise 1.24. Let Ω be the set {1, 2, 3}. Decide whether the symmetric group on Ω is or
not abelian. (If necessary, write down the group table of SΩ.)

Definition 1.25. Let n be a natural number and set Ωn := {1, . . . , n}. We abbreviate SΩn

to Sn and we also call Sn the ‘symmetric group of degree n’.

Lemma 1.26. |Sn| = n!.

Proof. A function σ : Ωn → Ωn is bijective if and only if it is injective because Ωn is a finite
set. So we simply need to count how many injective functions σ exist.

The injective function σ can map 1 to any of the n elements of Ωn; ω(2) can then be any
element of Ωn except for σ(1), so there are n−1 possibilities for σ(2); ω(3) can then be any
element of Ωn except for σ(1) and σ(2), so there are n− 2 possibilities for σ(3); and so on.

In this way, it is easy to see that there are n(n− 1)(n− 2) . . . 2 · 1 = n! possible injective
functions from Ωn into itself. This proves the Lemma. �

Notation 1.27. We introduce two different ways to denote the elements of Sn.

(i) We sometimes denote σ ∈ Sn by(
1 2 3 . . . n− 1 n

σ(1) σ(2) σ(3) . . . σ(n− 1) σ(n)

)
.

(ii) We shall often also use ‘cycle decomposition’ to denote elements of Sn. Let m ≤ n
and let a1, . . . , am be m distinct elements of Ωn. Then the ‘m-cycle’ (a1, . . . , am) is
the element of Sn defined by

ai 7→ ai+1 for each 1 ≤ i ≤ m− 1 and am 7→ a1.

We also say that the cycle (a1, . . . , am) has ‘length’ m.
An m-cycle (a1, . . . , am) and an m′-cycle (b1, . . . , bm′) are said to be ‘disjoint’ if

ai 6= bj for every i and j.
It is easy to see that every element of Sn is a composition of disjoint cycles, called

its cycle decomposition. See the table on [2, page 30] for the algorithm that gives
the cycle decomposition of any element of Sn.

The cycle decomposition is unique up to re-ordering, but please note that

(a1, . . . , am) = (am, a1, . . . , am−1) = (am−1, am, a1, . . . , am−2) = . . . = (a2, a3, . . . , am, a1)

and also that, if an m-cycle cm and an m′-cycle dm′ are disjoint, then

(4) cm ◦ dm′ = dm′ ◦ cm.
(iii) A cycle of length 2 is also called a ‘transposition’. One may also write every element

of Sn as a composition of transpositions. Such an expression is not unique, but there
is a well-defined function sgn : Sn → {±1}, the ‘sign of a permutation’, where sgn(σ)

is given by (−1)t(σ) where t(σ) is the number of transpositions in any expression of
σ as a composition of transpositions. In other words, for a given permutation σ,
either every such expression has an even number of transpositions, or every such
expression has an odd number of transpositions.

We say that σ is even, resp. odd, if t(σ) is even, resp. odd, or equivalently, if
sgn(σ) = 1, resp. sgn(σ) = −1.
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Example 1.28. Let σ ∈ S13 be the permutation

σ(1) = 12, σ(2) = 13, σ(3) = 3, σ(4) = 1, σ(5) = 11, σ(6) = 9, σ(7) = 5,

σ(8) = 10, σ(9) = 6, σ(10) = 4, σ(11) = 7, σ(12) = 8, σ(13) = 2.

Then the cycle decomposition of σ is

σ = (1, 12, 8, 10, 4) ◦ (2, 13) ◦ (3) ◦ (5, 11, 7) ◦ (6, 9).

As discussed in Notation 1.12 that we will usually omit the binary operation (in this case, ◦)
from the notation. In addition, any 1-cycle is just the identity permutation, so for instance
we may remove the 1-cycle (3) = id from the above expression without changing it. So we
will instead write the cycle decomposition of σ as

(5) σ = (1, 12, 8, 10, 4)(2, 13)(5, 11, 7)(6, 9).

Exercise 1.29. Show that the inverse element σ−1 of the permutation σ given in (5) is

σ−1 = (1, 4, 10, 8, 12)(2, 13)(5, 7, 11)(6, 9).

Exercise 1.30. We know that |S3| = 3! = 6. Show that the cycle decompositions of all
elements of S3 are

g1 = id, g2 = (1, 2), g3 = (1, 3), g4 = (2, 3), g5 = (1, 2, 3), g6 = (1, 3, 2).

Write down the group table of S3.

Exercise 1.31. Show that S4 is not abelian.

Exercise 1.32. Let n ≥ 3. A similar argument to the one you just used for S4 would show
that, in fact, Sn is not abelian.

Remark 1.33. We mentioned above that the cycle decomposition of a permutation is
unique up to re-ordering but, of course, this is true because we imposed that it is a com-
position of disjoint cycles. There are certainly multiple ways to write a permutation as a
product of arbitrary cycles: for instance in S3 one has

(1, 2, 3) = (1, 2)(2, 3).

The cycles (1, 2) and (2, 3) are not disjoint, and it is only the left-hand side of this equality
that gives the cycle decomposition of the permutation.

We will study symmetric groups in more depth in §4. In particular, see §4.1.1 for some
results on the order of permutations.

1.2.2. Dihedral groups. In this section we fix n ≥ 3. Then there is an important construction
of certain subsets D2n of Sn that are closed under ◦ and for which the pair (D2n, ◦) is also
a group (in the terminology of §2.1 below, this means that D2n is a ‘subgroup’ of Sn). Part
of the importance of the group D2n is that it has a geometric interpretation as the ‘group
of symmetries of the regular n-gon’.

In fact, this last sentence already defines D2n. Fix a labelling of the vertices of the regular
n-gon by the numbers in Ωn := {1, 2, . . . , n}. Then each symmetry s of the regular n-gon
permutes the vertices and therefore uniquely defines a permutation s of Ωn, which is the
same as saying an element s of Sn. Specifically, if the symmetry s puts vertex i in the place
where vertex j was originally, then s(i) = j for the corresponding element s of Sn.
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Definition 1.34. We have thus defined a subset

D2n := { symmetries of the regular n− gon } ⊆ Sn.
We call D2n the ‘dihedral group of order 2n’.

Remark 1.35. One always has |D2n| = 2n, so this terminology is consistent. From this
fact we also see, because 2n 6= n! for all n ≥ 4, that the inclusion D2n ⊂ Sn is always strict
for such n, meaning that there are permutations in Sn that do not define a symmetry of
the regular n-gon. However, 2 · 3 = 3! so D6 = S3.

It is clear from the geometric interpretation that the composition of two symmetries of
the regular n-gon is also a symmetry of the regular n-gon, that the identity symmetry is
the identity element with respect to composition, and that any symmetry has an inverse
element given by the symmetry obtained by reversing the motion. Therefore (D2n, ◦) is
indeed a group.

Remark 1.36. Some references denote the dihedral group of order 2n by Dn rather than
by D2n since, as we already noted, the number of vertices is always half the number of
symmetries.

See the explanation in [2, page 24] to justify the fact that |D2n| = 2n, or come up with
your own geometric explanation.

Notation 1.37. Fix a regular n-gon centered at the origin of the plane and fix a consecutive
labelling of the vertices, from 1 to n, in a clockwise manner. Let r denote the clockwise
rotation abound the origin through 2π/n. Let s denote the reflexion about the line of
symmetry through vertex 1 and the origin. It is then easy to see that:

(i) The elements 1, r, r2, r3, . . ., rn−1 are all distinct, but rn = 1. In particular,
o(r) = n.

(ii) s 6= 1 but s2 = 1, so o(s) = 2.
(iii) ri is never equal to s for any exponent i.
(iv) s ◦ ri 6= s ◦ rj for any i 6= j with 1 ≤ i, j ≤ n− 1, so

(6) D2n = {1, r, r2, . . . , rn−2, rn−1, s, s ◦ r, s ◦ r2, . . . , s ◦ rn−2, s ◦ rn−1}.
In other words, each element of D2n may be written uniquely in the for skri for
some k ∈ {0, 1} and some i ∈ {0, 1, . . . , n− 1}.

(v) r ◦ s = s ◦ rn−1 = s ◦ r−1 and, in particular, since r 6= r−1 and using Proposition
1.11(v), we see that the group D2n is never abelian.

(vi) ri ◦ s = s ◦ r−i = s ◦ (ri)−1 for each 0 ≤ i ≤ n.

Exercise 1.38. Prove claims (i)-(vi) in each of the cases n = 3 and n = 4.

Exercise 1.39. In D24, write the element sr9sr6 in the form (6).

Remark 1.40. The rotation r uniquely defines the cycle r = (1, 2, . . . , n) in Sn. The
symmetry s uniquely defines the permutation

s =

{
(2, n)(3, n− 1)(4, n− 2) . . . (n2 ,

n
2 + 2), n is even,

(2, n)(3, n− 1)(4, n− 2) . . . (n+1
2 , n+3

2 ), n is odd,
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in Sn.
One can thus fully ignore the geometric interpretation and simply define D2n by these

two equalities together with the equality (6).

Exercise 1.41. Ignoring the geometric interpretation, use the previous Remark to write
down all the elements of D8. Then prove that D8 ⊂ S4 is closed under ◦ and also to verify
that every element of D8 has an inverse element. Write down all the elements of D10 too
and prove the same things for D10 ⊂ S5.

1.2.3. General linear groups. Fix n ∈ N, let F denote either Q, R or C and write Mn(F )
for the set of n× n-matrices with entries in F . We set

Gln(F ) := {A ∈Mn(F ) : det(A) 6= 0}.

Then, althought (Mn(F ), ·) is not a group (where · is the usual matrix multiplication),
precisely because the matrices with trivial determinant do not have an inverse, the pair
(Gln(F ), ·) is a group.

To see this, we recall that · is a binary operation on Mn(F ) that is also associative.
We must show that Gln(F ) is closed under ·. But if A,B ∈ Gln(F ) then det(A · B) =
det(A)det(B) 6= 0.

Since the identity matrix I = In clearly belongs to Gln(F ) and since every element A of
Gln(F ) has an inverse matrix A−1 that must necessarily also belong to Gln(F ), it is clear
that (Gln(F ), ·) is a group.

Definition 1.42. The group Gln(F ) is called the ‘general linear group of degree n’.

Because F is an infinite set, it is very easy to see that Gln(F ) is not a finite group. In
addition, it is well-known that it is not an abelian group.

Exercise 1.43. Prove that Gl2(F ) is not abelian.

Remark 1.44. For any prime number p, the set Fp := Z/pZ together with the two binary
operations + and · is also a ‘field’, and everything discussed in this section works exactly
in the same way for F = Fp. Since Fp is finite, it is immediately clear that Gln(Fp) must
be a finite group. In fact, one may prove that

|Gln(Fp)| = (pn − 1)(pn − p)(pn − p2) . . . (pn − pn−1).

1.2.4. The quaternion group of order 8. The quaternion group of order 8 is

Q8 = {±1,±i,±j,±k},

with the binary operation · defined by 1x = 1 = x1 for all x ∈ Q8, (−1)(−1) = 1, (−1)x =
−x = x(−1) for all x ∈ Q8,

ii = jj = kk = −1, ij = k, ji = −k, jk = i, kj = −i, ki = j, ik = −j.

It is quite tedious to verify directly that this binary operation is associative. Once this is
achieved, it is clear that Q8 is a (finite, non-abelian) group of order 8.

1.3. Homomorphisms.
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1.3.1. Definition and first properties.

Definition 1.45. Let (G, ?G) and (H, ?H) be groups. Then a function f : G → H is a
‘homomorphism’ if

(7) f(g1 ?G g2) = f(g1) ?H f(g2)

for every g1, g2 ∈ G.

Notation 1.46. We also say that such a function f is a ‘homomorphism of groups’ or
a ‘group homomorphism’. Following Notation 1.12 we usually just write the displayed
condition (7) as f(g1g2) = f(g1)f(g2), so please always keep in mind that in the left-hand
side of this equality we are operating in G, while in the right-hand side we are operating in
H.

Exercise 1.47. Prove by induction that if f : G → H is a homomorphism and g1, . . . , gn
are elements of G, then

f
(i=n∏
i=1

gi
)

=
i=n∏
i=1

f(gi).

Lemma 1.48. If f : G → H is a homomorphism then f(eG) = eH and, for any g ∈ G,
f(g)−1 = f(g−1).

Proof. For any given g ∈ G we have f(g)f(eG) = f(geG) = f(g) = f(g)eH so, by Proposi-
tion 1.11 (v), we find f(eG) = eH .

We now fix g ∈ G and simply note that f(g)f(g−1) = f(gg−1) = f(eG) = eH , so by
Proposition 1.11 (viii) we find that f(g)−1 = f(g−1). �

Exercise 1.49. Show that the function f : G→ H given by f(g) = eH for every g in G is
a homomorphism. This is called the ‘trivial’ homomorphism from G to H.

1.3.2. Isomorphisms.

Definition 1.50. A function f : G→ H is an ‘isomorphism’ if it is a homomorphism that
is also bijective.

Notation 1.51. We sometimes use the notation f : G
∼−→ H or the notation f : G ∼= H to

indicate that f is an isomorphism. We also say that such a function f is an ‘isomorphism
of groups’ or a ‘group isomorphism’.

Definition 1.52. A group G is ‘isomorphic’ to a group H if there exists an isomorphism
f : G→ H. In this case we write G ∼= H.

Lemma 1.53. The relation G ∼= H is an equivalence relation.

In particular, we may say that G and H are isomorphic, or of the same isomorphism
type, or in the same isomorphism class.

Proof. The identity function idG : G→ G is clearly an isomorphism, so G ∼= G.
If f : G → H is an isomorphism, we claim that the inverse function f−1 is a homomor-

phism. For any h1, h2 ∈ H we have

(8) f(f−1(h1h2)) = h1h2 = f(f−1(h1))f(f−1(h2)) = f(f−1(h1)f−1(h2)),
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where the last equality holds because f is a homomorphism.
But, since f is injective, the displayed equality (8) implies that f−1(h1h2) = f−1(h1)f−1(h2),

so we have proved that f−1 is a homomorphism. We know that f−1 is always bijective. We
have therefore proved that if G ∼= H then H ∼= G.

We finally assume to be given isomorphisms of groups f : G ∼= H and f ′ : H ∼= I. It is
clear that f ′ ◦ f : G→ I is bijective, so we must only prove that f ′ ◦ f is a homomorphism
to deduce that f ′ ◦ f : G ∼= H, and thus that ∼= is a transitive relation.

The fact that f ′ ◦ f is a homomorphism now follows from the equalities
(9)
(f ′ ◦ f)(g1g2) = f ′(f(g1g2)) = f ′(f(g1)f(g2)) = f ′(f(g1))f ′(f(g2)) = (f ′ ◦ f)(g1)(f ′ ◦ f)(g2)

for any elements g1, g2 ∈ G. Here the second equality holds because f is a homomorphism
and the second equality holds because f ′ is a homomorphism. �

Remark 1.54. We note for later use that the argument (9) shows that, for any homomor-
phisms of groups f : G → H and f ′ : H → I, the composition f ′ ◦ f : G → I is also a
homomorphism.

As the use of the term ‘isomorphic’ suggests, it is generally true that isomorphic groups
have the same properties. For example, we have the following.

Lemma 1.55. If G and H are isomorphic and G is abelian, then so is H.

Proof. Fix an isomorphism f : G → H with inverse isomorphism f−1 : H → G. Then for
any h1, h2 ∈ H one has

f−1(h1)f−1(h2) = f−1(h2)f−1(h1)

because G is abelian, and therefore also

h1h2 = f(f−1(h1h2)) = f(f−1(h1)f−1(h2)) = f(f−1(h2)f−1(h1)) = f(f−1(h2h1)) = h2h1.

�

Remark 1.56. More generally than Lemma 1.55, one also sees directly that if G is an
abelian group and f : G → H is any group homomorphism, then for any elements h1 and
h2 of im(f) with h1 = f(g1) and h2 = f(g2), one has

h1h2 = f(g1)f(g2) = f(g1g2) = f(g2g1) = f(g2)f(g1) = h2h1.

However, if f is not surjective, this fact does not imply that H is abelian.

It is also clear that if G and H are isomorphic and G is finite, then so is H, and moreover
that |G| = |H|. In addition, we also have the following Lemma and Corollary.

Lemma 1.57. If f : G→ H is a homomorphism, then for every g ∈ G one has o(f(g)) ≤
o(g).

Proof. Without loss of generality, we may assume that o(g) < ∞. We only need to prove

that f(g)o(g) = eH . But by exercise 1.47 and Lemma 1.48 we find that f(g)o(g) = f(go(g)) =
f(eG) = eH , as required. �

Corollary 1.58. If f : G→ H is an isomorphism, then for every g ∈ G one has o(f(g)) =
o(g).

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE
LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS
CALL OR WHATSAPP:689 45 44 70

www.cartagena99.com no se hace responsable de la información contenida en el presente documento en virtud al
Artículo 17.1 de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico, de 11 de julio de 2002.
Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganoslo saber y será retirada.



18 DANIEL MACÍAS CASTILLO

Proof. Since both f : G → H and its inverse f−1 : H → G are homomorphisms (this is
shown in the proof of Lemma 1.53), we may apply Lemma 1.57 to both of them to find that

o(g) = o(f−1(f(g))) ≤ o(f(g)) ≤ o(g).

These inequalities must be equalities, thus o(g) = o(f(g)). �

Exercise 1.59.
(i) Set R>0 := {r ∈ R : r > 0}. Prove that (R>0, ·) is a group. Find an isomorphism
(R,+) ∼= (R>0, ·).
(ii) Decide whether R and R∗ are or not isomorphic, and whether R∗ and C∗ are or not
isomorphic.
(iii) Decide whether Z/6Z and S3 are or not isomorphic.

Exercise 1.60. Let Ω be a finite non-empty set of cardinality n. Prove that SΩ
∼= Sn by

following the following steps.
Fix any bijective function θ from Ω to Ωn := {1, . . . , n}. Define a function fθ : SΩ → Sn

by setting
fθ(σ) := θ ◦ σ ◦ θ−1

for every σ in SΩ. Then:

(i) Justify that fθ is well-defined, meaning that fθ(σ) belongs to Sn.
(ii) Construct a two-sided inverse Sn → SΩ of fθ to deduce that fθ is bijective.

(iii) Prove that fθ is a homomorphism.

1.4. (More) Exercises. Don’t forget to think about the exercises given throughout the
rest of section 1.

Exercise 1.61. Determine which of the following binary operations ? are associative, and
also which are commutative:

(i) a ? b = a+ b+ ab on the set R.
(ii) a ? b = (a+ b)/5 on the set Q.

(iii) (a, b) ? (c, d) = (ad+ bc, bd) on the set Z× Z.
(iv) a ? b = a/b on Q \ {0}.

Exercise 1.62. Determine which of the following sets are groups under the usual addition
operation.

(i) The set of rational numbers which, in lowest terms, have odd denominator, in-
cluding 0 ∈ Q.

(ii) The set of rational numbers which, in lowest terms, have even denominator,
including 0 ∈ Q.

(iii) The set of rational numbers which, in lowest terms, have denominator equal to 1
or 2, including 0 ∈ Q.

(iv) The set of rational numbers which, in lowest terms, have denominator equal to 1,
2 or 3, including 0 ∈ Q.

(v) The set {q ∈ Q : |q| < 1}.
(vi) The set {q ∈ Q : |q| ≥ 1} ∪ {0}.

Exercise 1.63. We set G := {z ∈ C : zn = 1 for some n ∈ N}.
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ALGEBRAIC STRUCTURES 19

(i) Prove that G is a group under multiplication.
(ii) Is G closed under addition?

Exercise 1.64. We set Z[
√

2] := {a+ b
√

2 : a, b ∈ Z} and Q[
√

2] := {a+ b
√

2 : a, b ∈ Q}.
(i) Prove that both (Z[

√
2],+) and (Q[

√
2],+) are groups.

(ii) Prove that (Q[
√

2] \ {0}, ·) is a group but (Z[
√

2] \ {0}, ·) is not a group.

Exercise 1.65. Find the order of each element of Z/12Z.

Exercise 1.66. In (Z/12Z)×, find the order of [1], [−1], [5], [7], [−7], [13].

Exercise 1.67. In Z/36Z, find the order of [1], [2], [6], [9], [10], [12], [−1], [−10], [−18].

Exercise 1.68. In (Z/36Z)×, find the order of [1], [−1], [5], [13], [−13], [17].

In the following exercises, let G be a group.

Exercise 1.69. Prove that (g1g2 . . . gn−1gn)−1 = g−1
n g−1

n−1 . . . g
−1
2 g−1

1 for any g1, . . . , gn ∈ G.

Exercise 1.70. Prove that an element g of G satisfies g2 = 1 if and only o(g) ∈ {1, 2}.

Exercise 1.71. Prove that if o(g) = n ∈ N then g−1 = gn−1.

Exercise 1.72. Let x and y be elements of G. Prove that x commutes with y if and only
if y−1xy = x, if and only if x−1y−1xy = 1.

Exercise 1.73. Let g be an element of G and let a, b ∈ Z. Prove that ga+b = gagb and
that (ga)b = gab.

Exercise 1.74. Prove that o(g) = o(g−1) for every g ∈ G.

Exercise 1.75. Assume that G is a finite group and let g ∈ G be an element of odd order.
Prove that there exists k ∈ N for which g = (g2)k.

Exercise 1.76. Prove that o(x) = o(y−1xy) for all x, y ∈ G. Deduce that o(gh) = o(hg)
for all g, h ∈ G.

Exercise 1.77. Prove that if o(g) = n ∈ N and n = st for s, t ∈ N, then o(gs) = t.

Exercise 1.78. Prove that if g2 = 1 for every g ∈ G, then G is abelian.

Exercise 1.79. Let G and H be groups and let g ∈ G and h ∈ H, so that (g, h) is an
element of G×H. Prove that o((g, h)) = lcm(o(g), o(h)).

Exercise 1.80. Assume that G is a finite group of even order.

(i) Prove that {g ∈ G : g 6= g−1} has an even number of elements.
(ii) Prove that G has an element of order equal to 2.

Exercise 1.81. Prove that if o(g) = n ∈ N then the elements 1, g, g2, . . . , gn−1 are all
distinct. Deduce that for any element g of finite order one has o(g) ≤ |G|.

Exercise 1.82. Let g be an element of G of finite order n.

(i) Prove that if n is odd then xi 6= x−i for all 1 ≤ i ≤ n− 1.
(ii) Prove that if n = 2k and 1 ≤ i ≤ n− 1, then xi = x−i if and only if i = k.
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20 DANIEL MACÍAS CASTILLO

Exercise 1.83. Prove that if g is an element of G of infinite order, then the element ga for
a ∈ Z are all distinct.

Exercise 1.84. Prove that if o(g) = n ∈ N then {ga : a ∈ Z} = {1, g, g2, . . . , gn−1}.

Exercise 1.85. Let Ω be a non-empty set and let P(Ω) be the set of all subsets of Ω. We
define a binary operation ? on P(Ω) by setting S ? T := (S ∪ T ) \ (S ∩ T ) for any subsets
S and T of Ω. Prove that (P(Ω), ?) is an abelian group, and determine the order of each
element of P(Ω).

Exercise 1.86. Let σ ∈ S5 be the permutation

1 7→ 3, 2 7→ 4, 3 7→ 5, 4 7→ 2, 5 7→ 1,

and let τ ∈ S5 be the permutation

1 7→ 5, 2 7→ 3, 3 7→ 2, 4 7→ 4, 5 7→ 1.

Find the cycle decompositions of each of the following elements of S5: σ, τ , σ2, στ , τσ,
τ2σ.

Exercise 1.87. Let σ ∈ S15 be the permutation

1 7→ 13 2 7→ 2 3 7→ 15 4 7→ 14 5 7→ 10
6 7→ 6 7 7→ 12 8 7→ 3 9 7→ 4 10 7→ 1
11 7→ 7 12 7→ 9 13 7→ 5 14 7→ 11 15 7→ 8

and let τ ∈ S15 be the permutation

1 7→ 14 2 7→ 9 3 7→ 10 4 7→ 2 5 7→ 12
6 7→ 6 7 7→ 5 8 7→ 11 9 7→ 15 10 7→ 3
11 7→ 8 12 7→ 7 13 7→ 4 14 7→ 1 15 7→ 13.

Find the cycle decompositions of each of the following elements of S15: σ, τ , σ2, στ , τσ,
τ2σ.

Exercise 1.88. For each of the permutations whose cycle decomposition was computed in
the previous two exercises, determine its order.

Exercise 1.89. Determine the order of each element of S3 and the order of each element
of S4.

Exercise 1.90. Determine the order of (1, 12, 8, 10, 4)(2, 13)(5, 11, 7)(6, 9) in S13.

Exercise 1.91. Prove that the group SN is infinite.

Exercise 1.92. Let σ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) ∈ S12. Compute σ2, σ3, σ4 and σ5.
Can you guess a characterisation of the positive integers n ∈ N for which σn is a 12-cycle?

Exercise 1.93.
(i) If n is odd, prove that the identity is the only element of D2n that commutes with all
elements of D2n.
(ii) If n is even, prove that the identity and rn/2 are the only elements of D2n that commute
with all elements of D2n.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE
LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS
CALL OR WHATSAPP:689 45 44 70

www.cartagena99.com no se hace responsable de la información contenida en el presente documento en virtud al
Artículo 17.1 de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico, de 11 de julio de 2002.
Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganoslo saber y será retirada.



ALGEBRAIC STRUCTURES 21

Exercise 1.94. Recall that F2 := Z/2Z and that

Gl2(F2) := {
(
a b
c d

)
: a, b, c, d ∈ F2, ad− bc 6= [0] in F2}.

Write down all the elements of Gl2(F2), compute the order of each of them, and determine
whether this group is abelian or not.

In the following exercises, F is allowed to denote Q, R or C.

Exercise 1.95. Prove, by induction on n, that Gln(F ) is not abelian.

Exercise 1.96. Let

G := {
(
a b
0 d

)
: a, b, d ∈ F, a 6= 0, d 6= 0},

H := {
(
a b
0 a

)
: a, b ∈ F, a 6= 0}

and

J := {
(

1 b
0 1

)
: b ∈ F}.

Prove that all of G, H and J are closed under multiplication of matrices and that all of
(G, ·), (H, ·) and (J, ·) are groups. Determine the order of every element of J .

Exercise 1.97. Determine the order of each element of Q8.

Exercise 1.98. Assume that G = {1, a, b, c} is a group of order 4 and that G has no element
of order 4. Prove that G is isomorphic to Z/2Z× Z/2Z.

Exercise 1.99. Let f : G → H be a homomorphism of groups. Show that f(ga) = f(g)a

for every g ∈ G and every a ∈ Z.

Exercise 1.100.
(i) Give an example of two finite, non-trivial groups G and H, of a homomorphism f : G→
H, and of an element g ∈ G for which o(f(g)) < o(g).
(ii) Give an example of two non-trivial groups G and H and of a homomorphism f : G→ H
with the property that o(f(g)) < o(g) for every g ∈ G \ {1}.

Exercise 1.101. Prove that Z and Q are not isomorphic.

Exercise 1.102. Prove that G × (H × J) ∼= (G × H) × J for any groups G,H, J . Prove
that G×H ∼= H ×G for any groups G and H.

In the following exercises we write E8 for Z/2Z× Z/2Z× Z/2Z.

Exercise 1.103. Prove that the groups

Z/8Z, Z/4Z× Z/2Z, E8, D8 and Q8

are pair-wise non-isomorphic.

Exercise 1.104. Prove that the groups

Z/24Z, Z/12Z× Z/2Z, E8 × Z/3Z, D24 and S4

are pair-wise non-isomorphic.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE
LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS
CALL OR WHATSAPP:689 45 44 70

www.cartagena99.com no se hace responsable de la información contenida en el presente documento en virtud al
Artículo 17.1 de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico, de 11 de julio de 2002.
Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganoslo saber y será retirada.



22 DANIEL MACÍAS CASTILLO

Exercise 1.105. Let G be a group. Prove that the (well-defined) function f : G→ G given
by f(g) := g−1 is a homomorphism if and only if G is abelian.

Exercise 1.106. Let G be a group. Prove that the (well-defined) function f : G→ G given
by f(g) := g2 is a homomorphism if and only if G is abelian.

Exercise 1.107. Let G be a group and let Aut(G) be the set of all isomorphisms G
∼−→ G.

Prove that composition of functions ◦ is a binary operation on Aut(G) and that (Aut(G), ◦)
is a group (the ‘group of automorphisms‘of G).

Exercise 1.108. Let A be an abelian group and fix k ∈ Z.

(i) Prove that the function fk : A→ A given by fk(a) := ak is a homomorphism.
(ii) In the case k = −1, prove that f−1 is an isomorphism (and thus an ‘automorphism’

of A).
(iii) In the case A = Q, for which values of k is fk an automorphism of Q?

Exercise 1.109. Let G be a finite group and assume that there exists an f ∈ Aut(G) with
the following properties:

(a) f(g) = g if and only if g = 1;
(b) (f ◦ f)(g) = g for every g ∈ G.

Prove that every element of G is of the form g−1f(g) for some g ∈ G. Then deduce that G
is abelian.

Exercise 1.110. Define an injective homomorphism f : Q8 → Gl2(C) that satisfies

f(i) =

(√
−1 0
0 −

√
−1

)
and f(j) =

(
0 −1
1 0

)
.
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2. Subgroups

2.1. Definition and examples.

2.1.1. The definition. Among the subsets of a group G, we are interested in studying those
that are themselves groups under the same binary operation. This means that a subgroup
H of a group (G, ?) will need to be defined to be a subset H that is closed under ?, and so
that in addition (H, ?) satisfies the group axioms.

As explained in Remark 1.2, if H is closed under ?, then this binary operation on H is
automatically associative. We are therefore led to make the following definition:

Definition 2.1. Let (G, ?) be a group and let H be a (non-empty) subset of G. We then
say that H is a subgroup of (G, ?) if the following conditions are satisfied:

(S1) H is closed under ?.
(S2) The identity element eG of (G, ?) belongs to H.
(S3) For every h ∈ H, the inverse element h−1 of h in G belongs to H.

Exercise 2.2. Prove that, under these conditions, the pair (H, ?) is a group, with identity
element eH := eG, and all elements of which have the same inverse element in H as in G (so
the notation h−1 is unambiguous). Prove that a subgroup of an abelian group is abelian,
and that a subgroup of a finite group is finite.

Notation 2.3. We often omit the binary operation from the notation and simply say that
H is a subgroup of G. However, one should not forget that whether a subset H of G
is a subgroup or not does depend on which binary operation we are considering G to be
equipped with.

We write (H, ?) ≤ (G, ?) or, more often, simply H ≤ G, to indicate that H is a subgroup
of G. We say that H is a strict, or proper, subgroup of G if it is a subgroup that is a strict
subset of G (obviously, G is always a subgroup of G). We feel free to write H < G if we
know that H is a strict subgroup of G, and we write H � G if we want the notation to
specify that H is a strict subgroup of G. We write H � G to indicate that a certain subset
H of a group G is not a subgroup of G.

The subset {eG} is always a subgroup of G. We often just write 1 (or 0 if we are using
additive notation) to denote this subgroup.

Exercise 2.4. Show that ≤ is a transitive relation on the set of subsets of G.

2.1.2. Alternative definitions. Although the Definition 2.1 of subgroups is more intuitively
clear and leads to an immediate resolution of Exercise 2.2, a closer look at the conditions
quickly shows that (S2) is redundant! We obtain the following alternative definition.

Lemma 2.5. Let (G, ?) be a group and let H be a (non-empty) subset of G. Then H is a
subgroup of (G, ?) if and only if conditions (S1) and (S3) are satisfied.

Proof. It is trivial that if conditions (S1), (S2) and (S3) are satisfied, then conditions (S1)
and (S3) are satisfied. We must therefore only prove the converse by showing that if
conditions (S1) and (S3) are satisfied, then so is condition (S2).

Since H is non-empty, we may fix an element h of H. By (S3) we know that the inverse
element h−1 of h in G also belongs to H. But then, by (S1) we know that eG = h ? h−1

belongs to H, as required. �
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24 DANIEL MACÍAS CASTILLO

We can also try to shorten the definition of a subgroup even further, by synthesizing
conditions (S1) and (S3) into a single condition as follows.

Lemma 2.6. Let (G, ?) be a group and let H be a (non-empty) subset of G. Then H is a
subgroup of (G, ?) if and only if the following condition holds:

(S’) For all x and y in H, the element x ? y−1 belongs to H.

Proof. We use Lemma 2.5, so we only need to show that conditions (S1) and (S3) hold if
and only if condition (S′) holds.

Fix x and y in H. If condition (S3) holds then y−1 belongs to H and if condition (S1)
also holds we thus get that x ? y−1 belongs to H. So condition (S′).

To prove the converse we assume that (S′) holds. Since H is non-empty, we may fix an
element z of H. Then eG = z ? z−1 belongs to H by (S′) applied with x = z and y = z.

Let now h be an arbitrary element of H. Then h−1 = eG ? h
−1 belongs to H, by (S′)

applied with x = eG and y = h. So condition (S3) holds.
Finally, to deduce that (S1) holds we fix any elements h and j of H. Then, since we have

already proved that (S3) holds, we know that j−1 belongs to H. But then h?j = h?(j−1)−1

belongs to H, by (S′) applied to x = h and y = j−1. This proves that condition (S1) holds
and thus completes the proof.

�

In the case of finite subsets H, checking the subgroup conditions becomes essentially
trivial.

Lemma 2.7. Let (G, ?) be a group and let H be a (non-empty) finite subset of G. Then H
is a subgroup of (G, ?) if and only if it is closed under ?.

Proof. We assume that H is closed under ? and, by Lemma 2.5, only need to prove that
condition (S3) is valid.

We fix an element h of H. We must prove that h−1 belongs to H. Now, because H is
closed under ?, all of the elements of the sequence

(10) h, h2, h3, h4, . . .

belong to H. Since H is finite, we must have hn = hm for some natural number n and m
with n 6= m. Without loss of generality, we have n < m. We set r := m− n ∈ N. Then

h ? hr−1 = hr = hm−n = hm ? h−n = hm ? (hn)−1 = hn ? (hn)−1 = eG.

Therefore h−1 = hr−1 which, as an element of the sequence (10), belongs to H. This proves
that condition (S3) holds, as required. �

2.1.3. Intersections and examples.

Exercise 2.8. Let {Hi : i ∈ I} be a (non-empty) set of subgroups of a group G. Prove
that the subset

⋂
i∈I Hi of G is a subgroup.

Exercise 2.9. Let H and K be subgroups of G. Prove that H ∩ K ≤ H (hence also
H ∩K ≤ K).
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Example 2.10. We will determine all the subgroups of each of the groups G := Z/4Z and
J := Z/2Z× Z/2Z. Obviously 0 and G are subgroups of G while 0 and J are subgroups of
J .

If H 6= G is a subgroup of G, it can not contain [1], because then [2] = [1] + [1], and
hence also [3] = [1] + [2], would have to belong to H, and this would contradict H 6= G. It
also can not contain [3], because then [2] = [3] + [3], and hence also [1] = [3] + [2], would
have to belong to H. So the only non-trivial possibility for H is H := {[0], [2]}. This set is
indeed a subgroup of G, as [2] + [2] = [0] and −[2] = [2]. So there exist three subgroups of
G:

0, H := {[0], [2]} and G.

If H 6= J , we claim that it can not contain three distinct elements. That is, we claim
that |H| 6= 3, so |H| ≤ 2. To prove this, we note that ([0], [1]) + ([1], [0]) = ([1], [1]), that
([0], [1]) + ([1], [1]) = ([1], [0]) and that ([1], [0]) + ([1], [1]) = ([0], [1]). So, if H contained
([0], [0]) and then also two of the elements ([0], [1]), ([1], [0]) and ([1], [1]), it would have to
contain the third one, contradicting H 6= J .

So the only non-trivial possibilities for H are the subsets of cardinality 2 containing
the identity, namely H1 := {([0], [0]), ([0], [1])}, H2 := {([0], [0]), ([1], [0])} and H3 :=
{([0], [0]), ([1], [1])}. It is easy to verify that H1, H2 and H3 are subgroups of J . So there
exist five subgroups of J :

0, H1, H2, H3 and J.

Exercise 2.11. Determine which of the given subsets of a given group is a subgroup:

(i) The subset N of the group Z.
(ii) The subset Z of the group Q.

(iii) The subset Q of R.
(iv) The subset (2Z+ 1) ∪ {0} of Z.
(v) The subset 2Z of Z.

(vi) The subset nZ := {nz : z ∈ Z} of Z, for n ≥ 3.
(vii) The subset Z \ {0} of Q∗.
(viii) The subset Q∗ of R∗.
(ix) The subset {±1} of Q∗.
(x) The subset {x+ xi : x ∈ R} of C.

(xi) The subset {x ∈ R : x2 ∈ Q} of R.
(xii) The subset {z ∈ C : |z| = 1} of C∗.
(xiii) The subset of rational numbers which (in lowest terms) have even denominator, of

the group Q.
(xiv) The subset of rational numbers which (in lowest terms) have odd denominator, of

the group Q.
(xv) The subset {x ∈ R∗ : x2 ∈ Q} of R∗.
(xvi) The subset of 2-cycles in S3.

(xvii) The subset of 2-cycles in Sn, for n ≥ 4.
(xviii) The subset S(ω) := {σ ∈ SΩ : σ(ω) = ω} of SΩ, for a fixed non-empty set Ω and a

fixed element ω of Ω.
(xix) The subset {1, r, r2, . . . , rn−1} of D2n.
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26 DANIEL MACÍAS CASTILLO

(xx) The subset {1, r2, s, sr2} of D8.
(xxi) The subset {1, r2, sr, sr3} of D8.

(xxii) The subsets G, H and J of Gl2(F ) that are defined in Exercise 1.96.

2.1.4. The kernel and the image of a homomorphism. We now see how every homomorphism
of groups f : G→ J has some important associated subgroups of G and of J .

Definition 2.12. Let f : G→ J be a homomorphism of groups. We define a subset

ker(f) := {g ∈ G : f(g) = eJ} ⊆ G
of G and a subset

im(f) := f(G) = {f(g) : g ∈ G} ⊆ J
of J . These are the ‘kernel’ and the ‘image’ of f , respectively.

Proposition 2.13. Let f : G→ J be a homomorphism. Then:

(i) im(f) is a subgroup of J .
(ii) ker(f) is a subgroup of G.

(iii) The function f is injective if and only if ker(f) = 1.
(iv) The homomorphism f is an isomorphism if and only if one has both ker(f) = 1 and

im(f) = J .

Proof. We often use Lemma 1.48 which states that f(1) = 1 and also that f(g)−1 = f(g−1)
for every g ∈ G.

The set im(f) is non-empty because and contains 1 = f(1). One has f(g1)f(g2) =
f(g1g2) ∈ im(f), so im(f) is a closed subset of J . In addition, for any g ∈ G one has
f(g)−1 = f(g−1) ∈ im(f), so im(f) contains the inverse of any of its elements. This proves
claim (i).

The set ker(f) is non-empty and contains 1. Now, if f(g1) = 1 and f(g2) = 1 then
f(g1g2) = f(g1)f(g2) = 1 · 1 = 1, so g1g2 belongs to ker(f). This shows that ker(f) is a
closed subset of G. In addition, if f(g) = 1 then f(g−1) = f(g)−1 = 1−1 = 1, so g−1 belongs
to ker(f). This shows that ker(f) contains the inverse of any of its elements. This proves
claim (ii).

We now consider claim (iii). It is clear that if f is injective then ker(f) = 1, as it
contains 1 but could not contain more than one element. To prove the converse we assume
that ker(f) = 1, and then also that f(g1) = f(g2). But then

f(g1g
−1
2 ) = f(g1)f(g−1

2 ) = f(g1)f(g2)−1 = f(g2)f(g2)−1 = 1,

so g1g
−1
2 ∈ ker(f) = 1. It follows that g1g

−1
2 = 1 and then that g1 = g2. This proves that f

would be injective, as required.
Claim (iv) follows immediately from claim (iii). �

Remark 2.14. Since 1 always belongs to ker(f) by Lemma 1.48, in the setting of claim (iii)
it is enough to verify that f(g) 6= 1 for every g 6= 1 in order to conclude that f is injective.

Notation 2.15. If f : G→ J is a homomorphism of groups and H is a subgroup of G that
is clear from context, we will sometimes abbreviate the restriction f |H of f to H to the
notation f∗.
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Lemma 2.16. Let f : G→ J be a homomorphism and let H be a subgroup of G. Let also
K be a subgroup of J which satisfies im(f) ⊆ K. Then:

(i) f∗ : H → J is a group homomorphism.
(ii) f : G→ K is a group homomorphism.

(iii) ker(f∗) = ker(f) ∩H, so in particular ker(f∗) is a subgroup of ker(f).
(iv) im(f∗) is a subgroup of im(f).

Proof. Claim (i) is clear, as f∗(hh′) = f(h)f(h′) = f(h)f(h′) = f∗(h)f∗(h) for any h, h′ ∈
H. Claim (ii) is also obvious.

If x belongs to ker(f∗) then x belongs to H and f(x) = f∗(x) = 1, so h belongs to ker(f).
This shows that ker(f∗) ⊆ ker(f) ∩H.

If h belongs to ker(f) ∩H then f∗(h) = f(h) = 1, so h belongs to ker(f∗). We conclude
that ker(f∗) = ker(f) ∩H.

Now the proved equality implies, by Exercise 2.9, that ker(f∗) is a subgroup of ker(f).
Clearly

im(f∗) = f∗(H) = f(H) ⊆ f(G) = im(f).

We know from Proposition 2.13(i) that im(f) is a subgroup of J . Thus we can apply claim
(ii) to f∗ : H → J , and with K = im(f), to deduce that

f∗ : H → im(f)

is a group homomorphism. By applying Proposition 2.13(i) again to this displayed homo-
morphism, we find that im(f∗) is a subgroup of im(f). �

2.2. Cyclic groups and cyclic subgroups.

2.2.1. The subgroup generated by a subset of a group. You have surely encountered in Linear
Algebra the notion of the subspace generated by a subset of a vector space. You may recall
that if S is a subset of a vector space V (over a field F ), then 〈S〉 is the smallest, or more
accurately the unique minimal, subspace of V which contains S. You may also recall that
〈S〉 can be explicitly computed as the linear span {f1s1 + . . .+ fnsn : n ∈ N, si ∈ S, fi ∈ F}
of S. In other words, by allowing any combination of the structural operations of V to be
applied to elements of S.

We will now formalise the analogous notion in the theory of groups.

Definition 2.17. Let G be a group and let S be any subset of G. Then the ‘subgroup of
G generated by S’ is

〈S〉 :=
⋂

S⊆H≤G
H.

Here the intersection runs over all subgroups of G which contain S. Clearly, S ⊆ 〈S〉 ⊆ G.
By Exercise 2.8, we know that 〈S〉 is a subgroup of G.

Exercise 2.18. Prove that, if S is a subgroup of G, then 〈S〉 = S.

It should be clear that the above definition of 〈S〉 formalises the intuitive idea of smallest
subgroup of G which contains S: 〈S〉 is the unique minimal element of the set {H ≤ G :
S ⊆ H}, ordered by inclusion.
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28 DANIEL MACÍAS CASTILLO

However, we will now give alternative constructions 〈S〉 which will be more useful when
trying to explicitly determine this subgroup in any given example.

In order to do this, for a subset S of a group G, we set

S := {sα1
1 sα2

2 . . . sαnn :n ∈ N, αi ∈ Z, si ∈ S},

Ŝ := {sα1
1 sα2

2 . . . sαnn :n ∈ N, αi ∈ Z, si ∈ S, si 6= si+1},

S̃ := {sγ11 s
γ2
2 . . . sγnn :n ∈ N, γi ∈ {±1}, si ∈ S}.

If S is the empty set, we take the convetion of letting any of these sets be the trivial
subgroup {1} of G.

Proposition 2.19. Let G be a group and let S be any subset of G. Then

〈S〉 = S = Ŝ = S̃.

Proof. Because sαsα
′

= sα+α′ for any s ∈ S and any α, α′ ∈ Z, it is clear that S = Ŝ.
Because sα may be expressed as sγ . . . sγ , with γ = 1 if α is a positive integer or with

γ = −1 if α is a negative integer, it is clear that S = S̃.

It is therefore enough to prove that 〈S〉 = S̃ and, to do this, we must first prove that S̃

is a subgroup of G. Let x = sγ11 s
γ2
2 . . . s

γn−1

n−1 s
γn
n and y = tδ11 t

δ2
2 . . . t

δm−1

m−1 t
δm
m be elements of S.

Then
y−1 = t−δmm t

−δm−1

m−1 . . . t−δ22 t−δ11

by Exercise 1.69 so

xy−1 = sγ11 s
γ2
2 . . . s

γn−1

n−1 s
γn
n t
−δm
m t

−δm−1

m−1 . . . t−δ22 t−δ11 .

Clearly xy−1 is an element of S̃, so S̃ is a subgroup of G, by Lemma 2.6.

To prove that S̃ = 〈S〉 we first observe that any element s = s1 of S belongs to S̃, so S̃
is a subgroup of G which contains S. From the definition of 〈S〉 we immediately get that

〈S〉 ⊆ S̃.
To prove the converse inclusion, it is enough to note that, since 〈S〉 is a subgroup of G

that contains S, it must contain every expression of the form sγ11 s
γ2
2 . . . sγnn . It is then clear

that S̃ ⊆ 〈S〉 so we finally deduce that S̃ = 〈S〉, as required. �

Notation 2.20. Given the claim of Proposition 2.19, we abandon the notations S, Ŝ and

S̃ and only use 〈S〉 in the sequel. For a finite set {s1, . . . , sk}, we abbreviate 〈{s1, . . . , sk}〉
to 〈s1, . . . , sk〉. Given sets S and T we sometimes write 〈S, T 〉 in place of 〈S ∪ T 〉.

Example 2.21. In the group Z we have 〈1〉 = Z. We also have 〈−1〉 = Z. In fact, one
has 〈S〉 = Z for any subset S of Z that contains either 1 or −1. For example, 〈N〉 = Z.
However, 〈2〉 = 2Z � Z.

Example 2.22. We use the notation of Example 2.10.
We first consider the group G := Z/4Z and the subgroup H := {[0], [2]} of G. Then we

have
〈[2]〉 = H

and also
〈[1]〉 = 〈[3]〉 = 〈[1], [2]〉 = 〈[1], [3]〉 = 〈[2], [3]〉 = 〈[1], [2], [3]〉 = G.
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We now consider the group J := Z/2Z × Z/2Z and the three non-trivial subgroups
H1, H2, H3 of J that are defined in Example 2.10. Then we have

〈([0], [1])〉 = H1, 〈([1], [0])〉 = H2, 〈([1], [1])〉 = H3

and also

〈([0], [1]), ([1], [0])〉 = 〈([0], [1]), ([1], [1])〉 = 〈([1], [0]), ([1], [1])〉 = 〈([0], [1]), ([1], [0]), ([1], [1])〉 = J.

Example 2.23. The description (6) shows that, in D2n, the subgroup 〈r, s〉 is equal to
D2n. If we also put a = s and b = rs, then clearly 〈a, b〉 ⊆ 〈r, s〉. But since r = ba, we also
have 〈r, s〉 ⊆ 〈a, b〉, so 〈a, b〉 = D2n. Note however that the element sr of D2n is not of the
form aαbβ for any α, β ∈ Z. This illustrates the fact that, in the alternative descriptions
of 〈S〉 given in Proposition 2.19, we always allow elements to be repeated in the relevant
expressions. One does have sr = aba.

Exercise 2.24. In G = Gl2(R) we set

A :=

(
0 1
1 0

)
, B :=

(
0 2

1/2 0

)
.

Find o(A) and o(B), and prove that the subgroup 〈A,B〉 of G is infinite.

2.2.2. Definition and first properties. Cyclic groups form a very special class of groups,
which have particularly simple properties. These are the groups that can be generated by
a single element (or, strictly speaking, by a set with a single element).

Definition 2.25.
(i) A group G is cyclic if there exists an element g in G with the property that 〈g〉 = G.
(ii) Any element g which satisfies 〈g〉 = G in a cyclic group G is called a generator of G.
We also say that g generates G.
(iii) Let G be any group. Then H is called a cyclic subgroup of G if it is both a subgroup
of G and a cyclic group.

Lemma 2.26. A group G is cyclic if and only if there exists an element g in G with the
property that {ga : a ∈ Z} = G.

Proof. Proposition 2.19 states that 〈g〉 = {̂g} = {ga : a ∈ Z}, and the lemma then becomes
immediate from the definition of a cyclic group. �

Corollary 2.27. Every cyclic group is abelian.

Proof. Let G be a cyclic group and let g be a generator of G. Then for any x, y ∈ G, Lemma
2.26 implies that x = ga and y = gb for some a, b ∈ Z, and we find that

xy = gagb = ga+b = gb+a = gbga = yx,

as required. Here the second and fourth equalities hold by Exercise 1.73. �

Exercise 2.28. Let G be a cyclic group and let g be a generator of G. Prove that g−1 is
a generator of G.

Example 2.29. Clearly Z is a cyclic group generated by 1. It is also generated by −1.
However, there are no other generators of Z: one has 〈b〉 = {a · b : a ∈ Z} = bZ = |b|Z,
which is strictly contained in Z if b 6= 1,−1.
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Example 2.30. We use the notation of Examples 2.10 and 2.22. The group G = Z/4Z is
cyclic, and both [1] and [3] are generators of G. The element [2] is not a generator of G,
but the subgroup H := {[0], [2]} of G is also cyclic, and [2] is a generator of H.

The group J := Z/2Z× Z/2Z is not cyclic. However, all three of the subgroups H1, H2

and H3 of J are cyclic, with the respective generators given in Example 2.22. But this fact
also implies that no element of J generates all of J , which is how we deduce that J is not
a cyclic group.

Exercise 2.31. Prove that the group Z/nZ is always cyclic. Find all generators of the
cyclic group Z/6Z.

Exercise 2.32. In the group G := (Z/5Z)× = {[1], [2], [3], [4]}, prove that

〈[1]〉 = {[1]}, 〈[2]〉 = G, 〈[3]〉 = G, 〈[4]〉 = {[1], [4]}.

Exercise 2.33. In D8, prove that r105 = r and that r−42 = r2. Is the group D8 cyclic?

2.2.3. Order of cyclic groups. Before stating our first result relating cyclic group orders to
element orders, we require the following auxiliary results which are very important in their
own right.

Lemma 2.34. Let G be a group and let h be an element of G.

(i) If h has finite order n, then the elements 1, h, h2, h3, . . . , hn−1 of G are distinct.
(ii) If h has infinite order, then ha 6= hb for any integers a, b with a 6= b.

Proof. We argue by contradiction. To prove claim (i), suppose that ha = hb with a, b ∈
{0, 1, 2, 3, . . . , n− 1} and with a 6= b. Without loss of generality, assume that a < b. Then

(11) hb−a = hbh−a = hb(ha)−1 = hb(hb)−1 = 1.

But 1 ≤ b− a ≤ n− 1, which contradicts the fact that n is the order of h.
To prove claim (ii), suppose that ha = hb with a, b ∈ Z and with a 6= b. Without loss

of generality, assume that a < b. Then the same equality (11) shows that hb−a = 1 with
1 ≤ b− a, which contradicts the fact that h has infinite order. �

Proposition 2.35. Let G be a group and let h be an element of G. If ha = 1 = hb with
a, b ∈ Z, then hd = 1 for d = (a, b). In particular, if hc = 1 for some c ∈ Z, then o(h)
divides c.

Proof. By the Euclidean Algorithm, there are r and s in Z for which d = ar+ bs. It follows
that

hd = har+bs = harhbs = (ha)r(hb)s = 1r1s = 1,

as required.
To prove the second claim let hc = 1. If c = 0 then clearly o(h) divides c. We assume

that c 6= 0. Then h must have finite order, and we set n := o(h) ∈ N. Let d := (c, n), so we
know that hd = 1. Since n is the order of h, we cannot have d ≤ n. But 1 ≤ d ≤ n, so we
find that d = n. In particular, o(h) = n = d = (d, c) divides c, as required. �

We may now directly relate the order of an element with the order of the group it
generates. Please note that this result fully justifies the use of the term ‘order’ in Definition
1.15 (ii).
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Proposition 2.36. Let G be a group and let h be an element of G. Set H := 〈h〉. Then h
has finite order if and only if H is finite, and there is an equality o(h) = |H|. In addition:

(i) If H has order n ∈ N, then hn = 1 and 1, h, h2, h3, . . . , hn−1 are all the distinct
elements of H.

(ii) If H is infinite then hm 6= 1 for each m ∈ Z and ha 6= hb if a 6= b.

Proof. We first assume that h has finite order n ∈ N. By Lemma 2.34 (i), the elements
1, h, h2, h3, . . . , hn−1 are all distinct. We must prove that H has no other elements, to
deduce that |H| = n. By Proposition 2.19, it is enough to show that ha belongs to
{1, h, h2, h3, . . . , hn−1} for every a ∈ Z.

To do this we use the Division Algorithm to write a = nq + k with 0 ≤ k ≤ n− 1. Then

ha = hnq+k = hnqhk = (hn)qhk = 1qhk = 1hk = hk,

as required.
Finally, we now assume that h has infinite order. Then Lemma 2.34 proves tat H is

infinite and also all of the additional claims.
It is furthermore now clear that h has finite order if and only if H is finite. �

The next result shows that, in fact, the structure of a cyclic group is completely deter-
mined by its order.

Theorem 2.37. Any two cyclic groups of the same order are isomorphic. Moreover, if G
and J are two cyclic groups of the same order, then for any generators x of G and y of J ,
the function

fx,y : G→ J

defined by setting fx,y(x
a) := ya for each a ∈ Z, is a well-defined isomorphism.

Proof. We fix x and y. If G and J are both infinite, then x has infinite order by Proposition
2.36, and hence fx,y is well-defined by Lemma 2.34 (ii).

If both G and J are finite of order n ∈ N, to prove that fx,y is well-defined, we fix a, b ∈ Z
with xa = xb, and we must prove that ya = yb.

Since xa−b = 1 by the same argument as in (11), Proposition 2.35 then implies that n
divides a− b. But if a− b = nq then ya = ynq+b = (yn)qyb = 1qyb = yb, as required.

We have proved that fx,y is well-defined in either case. Now if g1 = xa and g2 = xb are
any elements of G, then

fx,y(g1g2) = fx,y(x
axb) = fx,y(x

a+b) = ya+b = yayb = fx,y(x
a)fx,y(x

b) = fx,y(g1)fx,y(g2),

so fx,y is a homomorphism.
It is finally very easy to deduce from Proposition 2.36 that fx,y is both surjective and

injective, hence also an isomorphism. �

Corollary 2.38. The following claims are valid.

(i) If G is a cyclic group of infinite order, then Z ∼= G.
(ii) If G is a finite cyclic group of order n, then Z/nZ ∼= G.

Proof. This result is immediate upon combining Theorem 2.37 with Example 2.29 and
Exercise 2.31. �
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Notation 2.39. We denote by Cn the isomorphism class of Z/nZ. By abuse of notation,
when we do not need to distinguish between isomorphic groups, we sometimes refer to Cn
as ‘the cyclic group of order n’. However, when we use Cn to denote a group, we always
use multiplicative notation!

Proposition 2.40. Let G be a group, let g be an element of G and let k be a non-zero
integer.

(i) If g has infinite order then gk has infinite order.
(ii) If g has finite order then

o(gk) =
o(g)

(o(g), k)
.

Proof. To prove claim (i) we argue by contradiction. Suppose that g has infinite order but
o(gk) = m ∈ N. Then

gkm = (gk)m = 1

and also
g−km = (gkm)−1 = 1−1 = 1.

One of km or −km must be positive,so the corresponding displayed equality contradicts
the fact thet g has infinite order.

To prove claim (ii) we set h := gk, n := o(g) and d := (n, k), so we must prove that
o(y) = n/d.

Let k = da and n = db for integers a, b with b > 0. We must prove o(y) = b. We note for
later use that

(12) (a, b) = 1

by definition.
We first compute that

yb = gkb = gdab = (gdb)a = (gn)a = 1a = 1,

so Proposition 2.35 implies that o(y) divides b. It will be enough to prove that b divides
o(y).

But
gko(y) = (gk)o(y) = yo(y) = 1,

so Proposition 2.35 also implies that n divides ko(y), which means that db divides dao(y),
which means that b divides ao(y). But this last fact combines with (12) to imply that b
divides o(y), as required to complete the proof. �

Corollary 2.41. Let G be a finite cyclic group and let g be a generator of G. Then gk is
a generator of G if and only if (k, o(g)) = 1.

Proof. Proposition 2.36 states |G| = o(g) and also that the subgroup Hk := 〈gk〉 of G has
order |Hk| = o(gk).

Since |Hk| ≤ |G|, we see that gk is a generator of G if and only if o(gk) = o(g). By
Proposition 2.40, this last condition holds if and only if (k, o(g)) = 1, as required. �

Exercise 2.42. Determine the set of generators of the cyclic group Z/12Z.
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Exercise 2.43. Let G be an infinite cyclic group and let g be a generator of G. Prove that
the set of generators of G is equal to {g, g−1}.

2.2.4. Subgroups of cyclic groups. The following result gives a complete description of the
subgroups of a cyclic group.

Theorem 2.44. Let G be a cyclic group.

(i) All subgroups of G are cyclic. Moreover, if H 6= {1} is a subgroup of G, g is a
generator of G and d is the smallest natural number for which gd belongs to H, then
gd is a generator of H.

(ii) If G is finite, then for every natural number d that divides |G|, there is a unique
subgroup of G of order d. Moreover, there is a bijection between the set of subgroups
of G and the set of natural numbers that divide |G| (so there are no additional
subgroups of G).

(iii) If G is infinite, then every nontrivial subgroup of G is infinite, and there is a bijection
between the set of nontrivial subgroups of G and the set N.

Remark 2.45. Fix a generator g of G. Then in the setting of claim (ii) and for each natural

number d that divides |G|, the element g|G|/d is a generator of the subgroup of G that has
order d (you may use claim (i) to prove this).

Proof. Since {1} = 〈1〉 is always a cyclic group, to prove claim (i) it is enough to consider a
nontrivial subgroup H of G. We also fix a generator g of G. Then any non-trivial element
h of H is of the form ga for some a 6= 0, and h−1 = g−a must also belong to H. Since
H 6= {1}, the set

P := {b ∈ N : gb ∈ H}
is therefore non-empty. As in the statement of claim (i) we may then set

d := min(P).

We must prove that gd generates H.
Since gd belongs to H, we know that 〈gd〉 is contained in H. To prove the converse

inclusion, let h be an element of H. Then h = ga for some integer a, and by the Division
Algorithm we may write a = qd+ r for 0 ≤ r ≤ d− 1. Then

gr = ga−qd = ga(gd)−q = h(gd)−q

belongs to H, because both h and gd belong to H.
By the minimality of d, this means that r = 0. But then a = qd so h = ga = (gd)q belongs

to 〈gd〉. We have proved the reverse inclusion, so H = 〈gd〉 is cyclic. This completes the
proof of claim (i).

To prove claim (ii) we assume that G is finite with n := |G|, we fix a generator g of G
and a natural number d that divides n. We set k := n/d. Then Proposition 2.40(ii) implies
that o(gk) = n/(n, n/d) = n/(n/d) = d so Proposition 2.36 implies that Hd := 〈gk〉 has
order d.

We must show that Hd is the unique subgroup of G of order d. Let K be such a group.
By claim (i) we know that K = 〈gb〉 where b is the smallest natural number for which gb
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belongs to K. By Proposition 2.40(ii) we also know that
n

k
= d = |K| = |〈gb〉| = o(gb) =

n

(n, b)
,

so k = (n, b). Therefore k divides b, say b = kq, so gb = (gk)q belongs to 〈gk〉 = Hd and
therefore

K = 〈gb〉 ⊆ Hd.

Since K and Hk have the same order, they must be equal. This proves the uniqueness of
Hd.

To prove the final assertion of claim (ii), we must show that the order of every subgroup
of G must divide |G|. Let J be a subgroup of G. By claim (i) we know that J = 〈gm〉 for
some integer m. But then

|J | = o(gm) =
o(g)

(o(g),m)
=

|G|
(|G|,m)

,

which divides |G| as required. Here we have used Proposition 2.40(ii) and Proposition 2.36.
The proof of claim (iii) is similar, and we leave it as an exercise for an interested reader.

�

Exercise 2.46. In G = Z/12Z, show that [1], [5], [7] and [11] are all generators of G. Find
the set of generators of the subgroup of G of order 6, the set of generators of the subgroup of
G of order 4, the set of generators of the subgroup of G of order 3 and the set of generators
of the subgroup of G of order 2.

2.3. Lagrange’s Theorem. You may have noticed that in the examples of a finite group
G we have encountered so far, each element we have considered has order dividing |G|. And,
more generally, that each subgroup we have considered also has order dividing |G|. In this
section we will formalise this intuition thanks to Lagrange’s Theorem.

2.3.1. The cosets of a subgroup.

Definition 2.47. Let G be a group and let H be a subgroup of G. For any element g of
G, the set

gH := {gh : h ∈ H}
is called a left coset of H in G. For any element g of G, the set

Hg := {hg : h ∈ H}
is called a right coset of H in G.

Notation 2.48. If G = (G,+) is a group for which we use additive notation, then we shall
often write g +H for the left coset gH and H + g for right coset Hg.

Example 2.49. We consider the group G = Z together with the subgroup H = 5Z. Then
we have

0 + 5Z = 5Z = {5a : a ∈ Z} = 5Z+ 0,

1 + 5Z = {1 + 5a : a ∈ Z} = 5Z+ 1, 2 + 5Z = {2 + 5a : a ∈ Z} = 5Z+ 2,

3 + 5Z = {3 + 5a : a ∈ Z} = 5Z+ 3, 4 + 5Z = {4 + 5a : a ∈ Z} = 5Z+ 4.
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It is also easy to see that, for any 0 ≤ r ≤ 4 and any q ∈ Z, one has

(5q + r) + 5Z = r + 5Z = 5Z+ r = 5Z+ (5q + r).

Exercise 2.50. We consider the group G = D6 together with the subgroups H = {1, r, r2}
and H ′ = {1, s}. Verify that we have the following equalities:

(i) 1H = rH = r2H = H = Hr2 = Hr = H1.
(ii) sH = (sr)H = (sr2)H = {s, sr, sr2} = H(sr2) = H(sr) = Hs.

(iii) 1H ′ = sH ′ = H ′ = H ′s = H ′1.
(iv) rH ′ = (sr2)H ′ = {r, sr2}.
(v) r2H ′ = (sr)H ′ = {r2, sr}.

(vi) H ′r = H ′(sr) = {r, sr}.
(vii) H ′r2 = H ′(sr2) = {r2, sr2}.

Remark 2.51. Please note from the above exercise that, for instance, rH ′ 6= H ′r. However,
as we will see shortly, not only do both left and right cosets have the same cardinality as
the subgroup they are associated to, but also they each define partitions of the group G.
But these may be two different partitions!

Exercise 2.52. Construct a surjective homomorphism D6 → Z/2Z. Convince yourself that
there does not exist a surjective homomorphism D6 → Z/3Z.

Lemma 2.53. The sets H, g1H and Hg2 have the same cardinality, for any elements g1, g2

of G.

Proof. If we fix g1 ∈ G, then the function fg1 : H → g1H, defined by setting fg1(h) := g1 ·h
for each h ∈ H, is a well defined bijection. Indeed, it is clearly surjective, and also injective
by the cancellation property Proposition 1.11. Alternatively, it admits an inverse function
defined by left-multiplication by g−1

1 .
This shows that H has the same cardinality as g1H for any g1 ∈ G. The proof that H

has the same cardinality as Hg2 for any g2 ∈ G is identical. �

Definition 2.54. Let G be a group and let H be a subgroup of G. We define a binary
relation on G by saying that an element x of G is ‘congruent modulo H’ (or ‘related modulo
H’) to an element y of G, if the element y−1x belongs to H.

If x is congruent modulo H to y then we write

x ≡ y (mod H)

or simply x ≡ y (H) or even x ≡H y.

Proposition 2.55. Let G be a group and let H be a subgroup of G. Then the relation of
Definition 2.54 is an equivalence relation and, for any g ∈ G, the equivalence class [g]H of
g under this relation is equal to gH.

Proof. The relation is reflexive because x−1x = 1 belongs to H, since it is a subgroup, for
any x ∈ G.

Assume that x ≡ y (H), so y−1x belongs to H. Since H is a subgroup, we then know
that (y−1x)−1 belongs to H. But (y−1x)−1 = x−1y (by Proposition 1.11), so y ≡ x (H).
The relation is thus symmetric.
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Assume that x ≡ y (H), so y−1x belongs to H, and also that y ≡ z (H), so z−1y belongs
to H. Since H is a subgroup we get that (z−1y)(y−1x) belongs to H, and this element is
clearly equal to z−1x. Therefore x ≡ z (H), so the relation is transitive.

Let now g be any element of G. The equivalence class [g]H of g is by definition

{x ∈ G : x ≡ g (H)} = {x ∈ G : g−1x ∈ H}.
But g−1x belongs to H if and only if x belongs to gH, so we find that [g]H = gH, as
required. �

Corollary 2.56. Let G be a group and let H be a subgroup of G. Then the set of left cosets
of H in G is a partition of G.

Furthermore, xH = yH if and only if x ≡ y (H).

Remark 2.57. We deduce that gH = H if and only if g belongs to H.

Exercise 2.58. It is clear from Example 2.49 that for integers x and y, one has x ≡
y (mod 5Z) if and only if x ≡ y (mod 5). Show that, for any natural number n, one has
x ≡ y (mod nZ) if and only if x ≡ y (mod n).

Remark 2.59. One can define a different equivalence relation than the one in Definition
2.54 that has the property that, for any element g of G, the equivalence class of g is equal to
Hg. We emphasize again that, in general, this relation would be different and hence would
give a different partition of G. However one again has Hg = H if and only if g belongs to
H.

Exercise 2.60. Can you give an explicit definition of an equivalence relation that has the
property described in Remark 2.59?

2.3.2. Lagrange, Euler, Fermat, Cauchy. We may now easily prove Lagrange’s Theorem by
using the properties of left cosets (an analogous argument may also be developed through
the use of right cosets).

Theorem 2.61. Let G be a finite group and let H be a subgroup of G. Then the order of H
divides the order of G. In addition, the number of left cosets of H in G is equal to |G|/|H|.

Proof. By Corollary 2.56 we know that the set of left cosets of H in G is a partition of the
finite group G. Explicitly, this means that there is a natural number m, the number of left
cosets of H in G, and elements g1, . . . , gm of G, with the properties that

G =
⋃

1≤i≤m
giH

and that (gjH) ∩ (gkH) = ∅ whenever j 6= k.
We only need to show that |G| = m|H| in order to complete the proof. We know from the

above description of G that |G| =
∑

1≤i≤m |giH| (here we have used the fact that the given

cosets are disjoint). But Lemma 2.53 states that |giH| = |H| for each i, so we conclude
that |G| =

∑
1≤i≤m |H| = m|H|, as required. �

Example 2.62. You checked in Exercise 2.50 that in G = D6, a group of order 6, the
subgroup H = {1, r, r2} has 2 left cosets, namely H itself and {s, sr, sr2}. You also checked
that the subgroup H ′ = {1, s} has 3 left cosets, namely H ′, {r, sr2} and {r2, sr}.
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Definition 2.63. Let G be a group and let H be a subgroup of G. The number of left
cosets of H in G is called the ‘index’ of H in G and is denoted by [G : H] (or sometimes
|G : H| or (G : H)). We say that this index is finite or infinite depending on whether this
number is finite or not.

Remark 2.64. It is easy to see, by using Lemma 2.53 and Remark 2.59, that the index of
H in G is equal to the number of right cosets of H in G.

Remark 2.65. Lagrange’s Theorem implies that if G is a finite group, then any subgroup
H of G has finite index in G equal to |G|/|H|. However if G is an infinite group, then there
exist subgroups of G that have finite index and subgroups of G that have infinite index.
For instance, the subgroup H = G of G always has finite index equal to 1 in G, while the
subgroup H = {1} has infinite index in G.

Exercise 2.66. How many subgroups of Z have infinite index? And, for each natural
number n, how many subgroups of Z have finite index equal to n?

Corollary 2.67. Let G be a finite group. Then for every g ∈ G, the order o(g) of g divides

|G|. In particular, g|G| = 1.

Proof. By Proposition 2.36 we know that o(g) = |〈g〉|, so Lagrange’s Theorem implies that

o(g) divides |G|. The equality g|G| = 1 is an immediate consequence. �

Exercise 2.68.
(i) Prove Euler’s Theorem, stating that if n is a natural number and a is an integer coprime
to n, then

aϕ(n) ≡ 1 (mod n),

where ϕ denotes Euler’s function.
(ii) Prove Fermat’s Little Theorem, stating that if p is a prime number and a is an integer
with p - a, then

ap−1 ≡ 1 (mod p).

Corollary 2.69. Let G be a finite group whose order is a prime number. Then G is cyclic.
In particular if |G| = p is prime then G has isomorphism class Cp.

Proof. Let g be any element of G that is different from 1 (if G = {1} then |G| is not prime).
Then o(g) > 1. By Corollary 2.67, o(g) divides |G|, which is prime, so in fact o(g) = |G|.

By Proposition 2.36 we therefore know that the subgroup 〈g〉 of G has order equal to
|G|. Therefore we must have 〈g〉 = G, which means that G is cyclic.

The final assertion is immediate from Corollary 2.38 (ii), which allowed us to introduce
Cp in Notation 2.39. �

Remark 2.70. The full converse to Lagrange’s Theorem is not true. There exist finite
groups G and natural numbers n dividing |G| with the property that G has no subgroup of
order n. We will see explicit examples in the next section. There are, however, some partial
converses to Lagrange’s Theorem, that we will prove below. For instance:

(i) If G is a finite abelian group and n divides |G| then G has a subgroup of order n.
(ii) If G is a finite group and p is a prime divisor of |G|, then G has a subgroup of order

p (which is necessarily cyclic by Corollary 2.69). This result is known as Cauchy’s
Theorem.
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2.4. (More) Exercises. Don’t forget to think about the exercises given throughout the
rest of section 2.

Exercise 2.71. Give an example of a group (G, ?) and of a subset H of G that is closed
under ? but is not a subgroup of G

Exercise 2.72. Let G be a group of finite order n ≥ 2. Prove that G can not have a
subgroup of order n− 1.

Exercise 2.73. Let A be an abelian group and set Ator := {a ∈ A : o(a) <∞}. Prove that
Ator is a subgroup of A. This subgroup is called the ‘torsion subgroup’ of A.

Exercise 2.74. Let A be an abelian group and n ∈ N. Show that {a ∈ A : o(a) | n} is a
subgroup of A.

Exercise 2.75. Find a group G for which the subset {g ∈ G : o(g) <∞} is not a subgroup
of G.

Exercise 2.76. Fix n ≥ 2 and set A := Z× (Z/nZ).

(i) Find all the elements of Ator.
(ii) Show that the subset {a ∈ A : o(a) =∞} ∪ {(0, [0])} is not a subgroup of A

Exercise 2.77. Let H and K be subgroups of G. Prove that H ∪K is a subgroup of G if
and only if either H ∪K = H or H ∪K = K.

Exercise 2.78. We define a subset

Sln(F ) := {A ∈ Gln(F ) : det(A) = 1}
of Gln(F ), called the ‘special linear group’. Prove that it is a subgroup. Is Sln(F ) the kernel
of any homomorphism Gln(F )→ Glm(F ) for some m?

Exercise 2.79. Let G and J be groups. Prove that the subsets HG := {(g, 1) : g ∈ G} and
HJ := {(1, j) : j ∈ J} are subgroups of G× J . Define a homomorphism fJ : G× J → J for
which ker(fJ) = HG and a homomorphism fG : G× J → G for which ker(fG) = HJ .

Exercise 2.80. Let G be a group. Prove that the subset {(g, g) : g ∈ G} is a subgroup of
G×G.

Exercise 2.81.
(i) Show that if H1 is a subgroup of a group G1 and H2 is a subgroup of a group G2 then
H1 ×H2 is a subgroup of G1 ×G2.
(ii) Find groups G1 and G2 and a subgroup H of G1×G2 that is not equal to H1×H2 for
any subgroups H1 of G1 and H2 of G2.

Exercise 2.82. Let A be an abelian group and n ∈ Z. Prove that the subsets {an : a ∈ A}
and {a ∈ A : an = 1} are subgroups of A.

Exercise 2.83. Show that {x ∈ D2n : x2 = 1} is not a subgroup of D2n.

Exercise 2.84. Let H be a subgroup of Q with the property that 1/h belongs to H for
every non-zero element of H. Prove that either H = 0 or H = Q.
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Exercise 2.85.
(i) Find all subgroups of Z/48Z, giving a generator for each. Give also all the containments
between these subgroups.
(ii) Find all generators of Z/48Z.
(iii) Show that, for each x ∈ Z/48Z, there is a unique homomorphism

fx : Z/48Z→ Z/48Z
that satisfies fx([1]) = x.
(iv) Determine all elements x of Z/48Z for which fx is an isomorphism.

Exercise 2.86. Find all generators of Z/202Z.

Exercise 2.87. Find the number of generators of Z/49000Z.

Exercise 2.88. What is the order of [30] in Z/54Z? Write down all the elements of the
subgroup 〈[30]〉 of Z/54Z, and determine the order of each of these elements.

Exercise 2.89. Find all cyclic subgroups of D8. Find a proper subgroup of D8 that is not
cyclic.

Exercise 2.90. Prove that the following groups are not cyclic: C2 × C2, C2 × Z, Z × Z,
Q×Q.

Exercise 2.91. Prove that C2×Z is not isomorphic to Z and that C2×Q is not isomorphic
to Q.

Exercise 2.92. Let σ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) ∈ S12. Find σa for each of a =
13, 65, 626, 1195,−6,−81,−570,−1211.

Exercise 2.93.
(i) Prove that if elements x and y of a group G commute, then o(xy) divides lcm(o(x), o(y)).
(ii) Find a group G and elements x and y of G so that o(xy) does not divide lcm(o(x), o(y)).
(iii) Find a group G and commuting elements x and y of G so that o(xy) does not equal
lcm(o(x), o(y)).

Exercise 2.94. Let G be a group and let g be an element of G of finite order. Let n be
any positive multiple of o(g). Prove that there is a unique homomorphism f : Z/nZ → G
with the property that f([1]) = g.

Exercise 2.95. Let G be any group and let g be any element of G. Prove that there is a
unique homomorphism f : Z→ G with the property that f(1) = g.

Exercise 2.96. Let p be a prime and n ∈ N. Let G be a group and let g be an element of
G for which gp

n
= 1. Prove that o(g) = pm for some 0 ≤ m ≤ n.

Exercise 2.97. Let p be an odd prime and let n ∈ N. Use the Binomial Theorem to show
that

(1 + p)p
n−1 ≡ 1 (mod pn)

but
(1 + p)p

n−2 6≡ 1 (mod pn).

What is the order of [1 + p] in the group (Z/pnZ)×?
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Exercise 2.98. What is the order of [5] in (Z/2nZ)×, for n ≥ 3?

Exercise 2.99. Show that if n ≥ 3 then the group (Z/2nZ)× is not cyclic.

Exercise 2.100. Let G be a finite group and let k be an integer coprime to |G|. Prove that
the function G→ G given by g 7→ gk for each g ∈ G is surjective. (Careful: this function is
in general not a homomorphism.)

Exercise 2.101. For each a ∈ Z we define a function

σa : Cn → Cn

by setting σa(x) := xa for each x ∈ Cn. (Recall that we always use multiplicative notation
in ‘the group’ Cn.)

(i) Prove that σa is a homomorphism.
(ii) Prove that σa is an isomorphism if and only if (a, n) = 1.

(iii) Prove that σa = σb if and only if a ≡ b (mod n).
(iv) Prove that every automorphism of Cn is equal to σa for some a ∈ Z (coprime to n,

by (ii)).
(v) Prove that σa ◦ σb = σab.
(vi) Prove that there is an isomorphism

f : (Z/nZ)× → Aut(Cn)

given by f([a]) := σa.
(vii) Prove that Aut(Cn) is abelian of order equal to ϕ(n).

Exercise 2.102. Prove that if S ⊆ S′ are subsets of a group G then 〈S〉 ⊆ 〈S′〉. Give an
example of such a group G and such sets S and S′ for which S 6= S′ but 〈S〉 = 〈S′〉.

Exercise 2.103. Show that if x, y ∈ S3 have x 6= y and o(x) = 2 = o(y) then 〈x, y〉 = S3.

Exercise 2.104. Prove that the subgroup 〈(1, 2); (1, 2)(3, 4)〉 of S4 is isomorphic to C2×C2.

Exercise 2.105. Prove that the subgroup 〈(1, 2); (1, 3)(2, 4)〉 of S4 is isomorphic to D8.

Exercise 2.106. Prove that the subgroup 〈(1, 2, 3, 4); (1, 2, 4, 3)〉 is equal to S4.

Exercise 2.107. Prove that the subset {−1} ∪ {1/p : p ∈ N is prime} generates Q∗.

Exercise 2.108. A group G is called ‘finitely generated’ if there is a finite subset S of G
such that 〈S〉 = G.

(i) Prove that every finite group G is finitely generated.
(ii) Prove that Z is finitely generated.
(iii) Prove that Q and Q∗ are not finitely generated.
(iv) Let H be a subgroup of Q that is finitely generated. Prove that H is cyclic.
(v) Find a proper subgroup of Q that is not cyclic.

Exercise 2.109. Let p be a prime and set

G := {z ∈ C : zp
n

= 1 for some n ∈ N}.
For each k ∈ N set

Hk := {z ∈ C : zp
k

= 1}.
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(i) Prove that Hk is a finite subgroup of G and that Hk ⊆ Hl if and only if k ≤ l.
(ii) Prove that Hk is a cyclic group.

(iii) Prove that every proper subgroup of G is equal to Hk for some k.
(iv) Prove that G is not finitely generated.

Exercise 2.110. Let p be a prime and let G be a group of order 2p. Show that every
proper subgroup of G is cyclic.

Exercise 2.111. Let G be a group and let g be an element of G of finite order o(g) = n.
Let d ∈ N be a divisor of n. Prove that G has an element of order d.

Exercise 2.112. Find subgroups H and K of D8 with the property that the subset

HK := {hk : h ∈ H, k ∈ K}
is not a subgroup of G.

Exercise 2.113. Let p be a prime and n ∈ N. Let H and K be subgroups of Cpn . Show
that either H ⊆ K or K ⊆ H (or both).

Exercise 2.114. Let n be a natural number for which 2n + 1 is a prime number.

(i) Determine the order of [2] in (Z/(2n + 1)Z)×.
(ii) Deduce that n is a power of 2.

Exercise 2.115.
(i) Find all the subgroups of D16 that are contained in 〈sr2, r4〉.
(ii) Find all the subgroups of D16 that are contained in 〈sr7, r4〉.
(iii) Find all the subgroups of D16 that contain 〈r4〉.
(iv) Find all the subgroups of D16 that contain 〈s〉.

Exercise 2.116. Show that if H and K are finite subgroups of a group G that have coprime
orders, then H ∩K = {1}.
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3. Isomorphism theorems

3.1. Normal subgroups and quotient groups. The subgroups of a group G give us
information about the structure of G. Recall that a subgroup of G may be thought of as an
injective homomorphism H ↪→ G of groups. It is natural to wonder whether we can carry
out an analogous study of surjective homomorphisms G� J of groups.

In addition, we know from Definition 2.54 and Proposition 2.55 that each subgroup H fo
G defines an equivalence relation ≡H on G. In fact, as outlined in Remak 2.59 and Exercise
2.60, H defines two natural equivalence relations on G, which are in general different but
may coincide for some examples (see also Example 2.49, Exercise 2.50, Remark 2.51 and
Exercise 2.52).

We know that there is a surjective ‘projection’ function πH from G to the set of equiva-
lence classes G/ ≡H . So the natural question at this point is: does the binary operation
on G induce a well-defined binary operation on the set G/ ≡H?

If this question had an affirmative answer, then G/ ≡H would be a group, whose identity
element would be H, and πH would be a surjective homomorphism of groups, whose kernel
would be H.

To say that ‘the binary operation on G induces a binary operation on the set G/ ≡H ’
would mean that, for any two elements C1, C2 of G/ ≡H , choosing any ‘representatives’
g1, g2 ∈ G with C1 = g1H and C2 = g2H and then setting

C1 ? C2 := (g1 ? g2)H,

would give a well-defined function(
(G/ ≡H)× (G/ ≡H)

)
→ G/ ≡H .

The answer to the question is not affirmative in general. Consider, as in Exercise 2.50,
the group G = D6 and subgroup H ′ = {1, s}. We have

(D6/ ≡H′) = {H ′, {r, sr2}, {r2, sr}}
with 1H ′ = sH ′ = H ′, rH ′ = (sr2)H ′ = {r, sr2} and r2H ′ = (sr)H ′ = {r2, sr}. Then, at
the same time,

H ′ ? {r, sr2} = (1H ′) ? (rH ′) = (1r)H ′ = rH ′ = {r, sr2}
and

H ′ ? {r, sr2} = (sH ′) ? (rH ′) = (sr)H ′ = {r2, sr}.
Clearly, this is not a well-defined function, as {r, sr2} 6= {r2, sr}.

Even if the answer to the question is not affirmative in general, it may be affirmative for
some examples. For instance, let f : G → J be a homomorphism of groups. Recall from
Definition 2.12 and Proposition 2.13 (ii) that the kernel K := ker(f) of f is a subgroup of
G. We will prove below that the binary operation on G does induce a binary operation on
the set G/ ≡K .

In fact, we will prove that the following three conditions on a subgroup H of a group G
are equivalent:

(i) The two natural equivalence relations on G defined by H coincide.
(ii) The binary operation on G induces a well-defined binary operation on G/ ≡H .

(iii) H is the kernel of some homomorphism, that has domain G.
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We will say that H is a ‘normal subgroup of G’ if it satisfies either of these three equivalent
conditions. In that case, the resulting set G/ ≡H will indeed be a group, which we shall
denote simply by G/H and call the ‘quotient group’ of G over H.

3.1.1. The fibres of a homomorphism.

Definition 3.1. Let f : G→ J be a homomorphism of groups. For each y ∈ J , the set

f−1(y) := f−1({y}) = {x ∈ G : f(x) = y}

is called the ‘fibre’ of f at y.

Remarks 3.2.
(i) We have ker(f) = f−1(1), so the kernel of f is a distinguished fibre of f .
(ii) Clearly f−1(y) is non-empty if and only if y belongs to im(f). In particular the set of
non-empty fibres of f is

(13) {f−1(y) : y ∈ J} = {f−1(y) : y ∈ im(f)} = {f−1(f(x)) : x ∈ G}.

Example 3.3. Fix a natural number n and consider the map

f : Z→ Z/nZ

given by f(a) := [a] for each a ∈ Z. Clearly f is a surjective homomorphism with kernel

(14) ker(f) = nZ.

For each b ∈ Z we have

f−1([b]) = {a ∈ Z : [a] = [b]} = {a ∈ Z : a ≡ b (nZ)} = b+ nZ = b+ ker(f).

Thus the fibres of f are

ker(f) = f−1([0]), 1+ker(f) = f−1([1]), 2+ker(f) = f−1([2]), . . . , (n−1)+ker(f) = f−1([n−1]).

Keeping (14) in mind, it is now very easy to see that the set of fibres of f coincides with
the set Z/ ≡ker(f) of left cosets of ker(f) in Z.

In this special case, the addition in Z induces a well-defined binary operation on Z/ ≡ker(f).
Indeed, if C1 = a1 + ker(f) = b1 + ker(f) and C2 = a2 + ker(f) = b2 + ker(f) then
{a1 + nx : x ∈ Z} = {b1 + nx : x ∈ Z} and {a2 + nx : x ∈ Z} = {b2 + nx : x ∈ Z} and
therefore

(a1 + a2) + ker(f) = {a1 + a2 + nx : x ∈ Z} = {a1 + b2 + nx : x ∈ Z}
= {b1 + b2 + nx : x ∈ Z} = (b1 + b2) + ker(f).

This proves that the addition C1 +C2 is well-defined for any C1, C2 in Z/ ≡ker(f), as it does
not depend on the choice of representatives.

It is very easy to see that (Z/ ≡ker(f),+) is a group. If Ci = ai + ker(f) for i = 1, 2, 3
then

(C1 + C2) + C3 = ((a1 + a2) + ker(f)) + C3 = ((a1 + a2) + a3) + ker(f)

= (a1 + (a2 + a3)) + ker(f) = C1 + ((a2 + a3) + ker(f)) = C1 + (C2 + C3),
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which shows that + is associative. The element ker(f) of Z/ ≡ker(f) is the identity element,
since for any C = a+ ker(f) we have

C + ker(f) = (a+ ker(f)) + (0 + ker(f)) = (a+ 0) + ker(f) = a+ ker(f) = C

= a+ ker(f) = (0 + a) + ker(f) = (0 + ker(f)) + (a+ ker(f)) = ker(f) + C.

For any element C = a+ ker(f), the inverse element is −C := (−a) + ker(f), since

C + (−C) = (a+ ker(f)) + ((−a) + ker(f)) = (a− a) + ker(f) = ker(f)

= (−a+ a) + ker(f) = ((−a) + ker(f)) + (a+ ker(f)) = (−C) + C.

The reader should at this point have the intuition that the group (Z/ ≡ker(f),+) has ‘the
same structure’ as the group (Z/nZ,+). To formalise this intuition, simply note that f
induces the group isomorphism

f : Z/ ≡ker(f)
∼−→ Z/nZ,

given by
f(a+ ker(f)) := f(a) + ker(f) = f(a) + nZ = [a]n.

This example justifies the notation Z/nZ!

We will show that some of the arguments in Example 3.3 extend to a more general setting.
For now, we begin by proving that, whenever a subgroup is the kernel of a homomorphism,
the left and right cosets associated to this subgroup coincide.

Proposition 3.4. Let f : G→ J be a homomorphism of groups.

(i) Let g be any element of G. Then

g ker(f) = f−1(f(g)) = ker(f)g.

(ii) Let g and h be elements of G. Then the following conditions are equivalent:
(a) h belongs to g ker(f).
(b) h ker(f) = g ker(f).
(c) f(h) = f(g).
(d) ker(f)h = ker(f)g.
(e) h belongs to ker(f)g.

Proof. To prove claim (i) we fix g ∈ G and we only prove the first equality, g ker(f) =
f−1(f(g)). We leave the second equality, which is very similar, as an exercise.

Let k belong to ker(f). We first claim that gk belongs to f−1(f(g)). To se this we must
prove that f(gk) = f(g). But this equality is valid because

f(gk) = f(g)f(k) = f(g)1 = f(g).

We have proved that g ker(f) ⊆ f−1(f(g)).
To prove the converse, let x be any element of G with f(x) = f(g). We must prove that

x belongs to g ker(f). But

(15) x = g(g−1x)

where g−1x belongs to ker(f), because

f(g−1x) = f(g−1)f(x) = f(g)−1f(x) = f(g)−1f(g) = 1.
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Here the second equality uses Lemma 1.48. So (15) shows that x belongs to g ker(f). This
completes the proof of the equality g ker(f) = f−1(f(g)).

We now prove claim (ii) by using claim (i). The element h belongs to g ker(f) if and only
if it belongs to f−1(f(g)), which happens if and only if f(h) = f(g). This shows that (a) is
equivalent to (c).

If (c) is valid then

h ker(f) = f−1(f(h)) = f−1(f(g)) = g ker(f),

so (b) is valid.
Similarly if (b) is valid then one easily shows that f−1(f(h)) = f−1(f(g)). This equality

imples that f(h) must be equal to f(g), so (c) must be valid.
Finally it is clear from claim (i) that (a) is equivalent to (e) and that (b) is equivalent to

(d), so all claims must be equivalent. �

Corollary 3.5. Let f : G→ J be a homomorphism of groups. Then the set of non-empty
fibres of f coincides with the set of left cosets of ker(f) in G.

Proof. From (13) we know that the set of non-empty fibres of f is {f−1(f(g)) : g ∈ G},
which is then equal to the set {g ker(f) : g ∈ G} of left cosets of ker(f) in G by Proposition
3.4. �

Remark 3.6. Clearly another application of Proposition 3.4 also shows that the set of
non-empty fibres of f coincides with the set of right cosets of ker(f) in G.

Definition 3.7. Let f : G→ J be a homomorphism of groups. We write G/ ker(f) for the
set of left cosets of ker(f) in G.

Corollary 3.8. Let f : G → J be a homomorphism of groups. The binary operation
on G induces a well-defined binary operation on G/ ker(f), which makes G/ ker(f) into a
group. The identity element of G/ ker(f) is ker(f) and the inverse of each coset g ker(f) is
g−1 ker(f).

Moreover, f induces a well-defined isomorphism of groups

f : G/ ker(f)
∼−→ im(f)

given by
f(g ker(f)) := f(g)

for each g ∈ G.

Proof. We fix elements C1 and C2 of G/ ker(f) and elements a1, b1, a2, b2 of G for which

C1 = a1 ker(f) = b1 ker(f), C2 = a2 ker(f) = b2 ker(f).

From Proposition 3.4 we get that f(a1) = f(b1) and that f(a2) = f(b2).
To prove that the binary operation on G induces a well-defined binary operation on

G/ ker(f) it is enough to show that (a1a2) ker(f) is equal to (b1b2) ker(f). But this is true
because

(a1a2) ker(f) = f−1(f(a1a2)) = f−1(f(a1)f(a2))

= f−1(f(b1)f(b2)) = f−1(f(b1b2)) = (b1b2) ker(f).

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE
LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS
CALL OR WHATSAPP:689 45 44 70

www.cartagena99.com no se hace responsable de la información contenida en el presente documento en virtud al
Artículo 17.1 de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico, de 11 de julio de 2002.
Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganoslo saber y será retirada.



46 DANIEL MACÍAS CASTILLO

Here the first and last equality are also given by Proposition 3.4.
The induced operation is associative because if Ci = ai ker(f) for i = 1, 2, 3 then

(C1C2)C3 = ((a1a2) ker(f))C3 = ((a1a2)a3) ker(f)

= (a1(a2a3)) ker(f) = C1((a2a3) ker(f)) = C1(C2C3).

For any C = g ker(f) we have

C ker(f) = (g ker(f))(1 ker(f)) = (g1) ker(f) = g ker(f) = C

= g ker(f) = (1g) ker(f) = (1 ker(f))(g ker(f)) = ker(f)C

and also

(g ker(f))(g−1 ker(f)) = (gg−1) ker(f) = 1 ker(f) = ker(f)

= 1 ker(f) = (g−1g) ker(f) = (g−1 ker(f))(g ker(f)).

These equalitites combine to imply that ker(f) is the identity element for the induced binary
operation and that C−1 = g−1 ker(f). This proves that G/ ker(f) is a group.

We now show that f is a well-defined function. If g ker(f) = h ker(f) then by Proposition
3.4 we have f(g) = f(h), so f(g ker(f)) = f(h ker(f)) is well-defined.

We observe that f is a homomorphism of groups because

f((g1 ker(f))(g2 ker(f))) = f((g1g2) ker(f)) = f(g1g2) = f(g1)f(g2) = f(g1 ker(f))f(g2 ker(f)).

It is immediately clear that f is a surjective function onto im(f), since for any g ∈ G,
f(g) is the image under f of g ker(f).

To conclude that f is an isomorphism it is enough to prove that it is injective, so by
Proposition 2.13(iii) it is enough to verify that ker(f) = {ker(f)}. Therefore (keeping in
mind Remark 2.14) we must only prove that if g ker(f) 6= ker(f) then

f(g ker(f)) = f(g) 6= 1.

We assume that g ker(f) 6= ker(f) and argue by contradiction. If f(g) = 1 then the
equivalence of (c) and (b) in Proposition 3.4 (ii) would imply that g ker(f) = ker(f), a
contradiction. So we must have f(g) 6= 1. This shows that ker(f) is the only element of
ker(f), so f is injective and thus an isomorphism. �

Remark 3.9. Let f : G → J be a homomorphism of groups. By Proposition 3.4 and
Corollaries 3.5 and 3.8, we find that the the binary operation of G induces a binary operation
on the set of non-empty fibres of f which makes it into a group (with identity ker(f)).
Moreover, there is an isomorphism f from this group to im(f) which, if f−1(y) is a non-
empty fibre of f , is given by f(f−1(y)) = y.

Remark 3.10. It is straightforward to give another yet description of f in terms of right
cosets of ker(f) in G.

Notation 3.11. We often abbreviate the coset g ker(f) in G/ ker(f) to [g] or to g when f
is clear from context.
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Examples 3.12. (i) In Example 3.3 we were able to show that Z/ ker(f) is isomorphic
to Z/nZ for the given homomorphism f : Z → Z/nZ because we implicitly used that f is
surjective, so im(f) = Z/nZ. As we mentioned, since ker(f) = nZ, this example justifies
the use of the notation Z/nZ.
(ii) If f : G → J is an isomorphism then ker(f) = {1} and we have the composite isomor-
phism

G/{1} f−→ J
f−1

−→ G,

which is explicitly computed as

f−1(f(g{1})) = f−1(f(g)) = g.

Of course, even without using Corollary 3.8 it is easy to see that the map G/{1} → G which
maps g{1} to g is an isomorphism.
(iii) For the trivial homomorphism f : G→ J , which maps every g ∈ G to 1 in J , we have
ker(f) = G and the isomorphism

G/G ∼= {1}.
(iv) Consider R2 and R as groups under addition (this is automatic since they are vector
spaces) and the (surjective) function

f : R2 → R

given by f((x, y)) := x. This is a group homomorphism (check this fact!). Clearly

ker(f) = {(x, y) : x = 0},
which geometrically corresponds to the y-axis. Note that the fibre above each x0 ∈ R is
simply the vertical line

f−1(x0) = {(x0, y) : y ∈ R}
through (x0, 0), which gives a geometrical interpretation of the left coset (x0, 0) + ker(f).
The group operation on R2/ ker(f) induced by the addition on R2 simply takes any vertical
lines f−1(x1) and f−1(x2), for any x1 and x2, and gives back the line f−1(x1 + x2).

Exercise 3.13. We define a function

f : Q8 → (Z/2Z× Z/2Z)

by setting

f(±1) = ([0], [0]), f(±i) = ([0], [1]), f(±j) = ([1], [0]), f(±k) = ([1], [1]).

Show that f is a group homomorphism and write down the group table of Q8/ ker(f).

3.1.2. Normal subgroups.

Proposition 3.14. Let G be a group and let H be a subgroup of G. Then the following
conditions are equivalent.

(i) The binary operation on G induces a well-defined binary operation on the set of left
cosets of H in G.

(ii) The element ghg−1 belongs to H for every g ∈ G and every h ∈ H.
(iii) We have an equality of sets gH = Hg for every g ∈ G.
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Proof. We first prove that the conditions (i) and (ii) are equivalent.
We first assume that (i) holds and we fix g ∈ G and h ∈ H. We must prove that ghg−1

belongs to H.
We recall from Remark 2.57 that hH = H = 1H. By condition (i) we know that (gh)H =

(g1)H = gH and then, using condition (i) again, also that (ghg−1)H = (gg−1)H = 1H = H.
Remark 2.57 now implies that ghg−11 = ghg−1 must belong to H, as required.

Conversely, we assume that condition (ii) holds. We let C1 = g1H = g′1H and C2 =
g2H = g′2H. We know from Corollary 2.56 that

h1 := (g′1)−1g1 and h2 := (g′2)−1g2

are both elements of H and then from condition (ii) (applied with h = h1 and g = (g′2)−1)
that

h3 := (g′2)−1h1g
′
2

also belongs to H.
We must prove that (g1g2)H = (g′1g

′
2)H. Again by Corollary 2.56, since the set of left

cosets of H in G is a partition of G, it will be enough to prove that these two sets have a
common element. Clearly g1g2 belongs to (g1g2)H, so it is enough to prove that g1g2 also
belongs to (g′1g

′
2)H. This required containment is true because

g1g2 = g′1(g′1)−1g1g
′
2(g′2)−1g2 = g′1h1g

′
2h2 = g′1g

′
2((g′2)−1h1g

′
2)h2 = g′1g

′
2h3h1.

We next prove that conditions (ii) and (iii) are equivalent.
We first assume that (ii) holds and we fix g ∈ G. Then

gH = {gh : h ∈ H} = {(ghg−1)g : h ∈ H} ⊆ Hg
and, similarly,

Hg = {hg : h ∈ H} = {g(g−1hg) : h ∈ H} ⊆ gH.
Thus gH and Hg must be equal, as required.

Conversely, we assume that condition (iii) holds and we fix g ∈ G and h ∈ H. Then
gh = h′g for some h′ in H and therefore ghg−1 = h′gg−1 = h′ ∈ H, as required. �

Definition 3.15.
(i) Let G be a group and let H be a subgroup of G. We say that ‘H is normal in G’ if
ghg−1 belongs to H for every g ∈ G and every h ∈ H.
(ii) Let G be a group and let H be a subset of G. We say that ‘H is a normal subgroup of
G’ to indicate that H is a subgroup of G that is normal in G.

Notation 3.16. Let G be a group. The notation H E G means that H is a normal
subgroup of G.

Definition 3.17. Let G be a group and let H be a subset of G. For any element g of G,
the set

gHg−1 := {ghg−1 : h ∈ H}
is called the ‘conjugate of H by g’. Each individual element of the form ghg−1 is called the
‘conjugate of h by g’. We also say that ‘g normalises H’ if the set gHg−1 is equal to H.

Exercise 3.18. Let G be a group and let H be a subgroup of G.
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(i) For any g ∈ G, prove that the conjugate gHg−1 of H by g is a subgroup of G.
(ii) For any g ∈ G, prove that the function

fg : H → gHg−1,

given by fg(h) := ghg−1 for each h ∈ H, is a homomorphism.
(iii) Prove that each homomorphism fg in claim (ii) is actually an isomorphism.
(iv) Prove that H is normal in G if and only if every element g of G normalises H.

Remark 3.19. Let G be a group, let H be a subgroup of G and let g0 be an element of
G. It is not true that g0Hg

−1
0 ⊆ H if and only if g0Hg

−1
0 = H. However, it is true that

gHg−1 ⊆ H for every g ∈ G if and only if gHg−1 = H for every g ∈ G.

Corollary 3.20. Let G be a group and let H be a subgroup of G. If H is normal in G,
then the set of left cosets of H in G is a group under the binary operation induced from the
binary operation on G. The identity element of this group is H and, for any g ∈ G, one
has (gH)−1 = g−1H.

Proof. By Proposition 3.14 we know that the binary operation on the set of left cosets of
H in G is well-defined. Associativity of this operation follows easily from associativity of
the original operation, as

((g1H)(g2H))g3H = ((g1g2)H)g3H = ((g1g2)g3)H

= (g1(g2g3))H = g1H((g2g3)H)) = g1H((g2H)(g3H))

for any g1, g2, g3 ∈ G.
The fact that H is the identity element of this group follows easily from the equality

H = 1H, and then the equality (gH)−1 = g−1H also becomes very easy to verify. �

Definition 3.21. Let G be a group and let H be a normal subgroup of G. We write G/H
for the set of left cosets of H in G, always considered as a group with the binary operation
induced by that of G. We call G/H the ‘quotient group of G over H’. We also write πH
for the function G→ G/H defined by

πH(g) := gH

and call it the ‘projection map’ of G onto G/H.

Exercise 3.22. Let G be a group and let H be a normal subgroup of G. Prove that
πH : G→ G/H is a group homomorphism, that it is surjective, and that ker(πH) = H.

Proposition 3.23. Let G be a group and let H be a subgroup of G. Then H is normal in
G if and only if H is the kernel of a group homomorphism that has G as its domain.

Proof. We know from Corollary 3.8 that if H = ker(f) for some group homomorphism
f : G→ J , then the binary operation on G induces a well-defined binary operation on the
set of left cosets of H in G. By Proposition 3.14 it would then follow that H is normal in
G.

Conversely, assume that H is normal in G. Then from Exercise 3.22 we know that H is
the kernel of the homomorphism of groups πH : G→ G/H. �
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Exercise 3.24. Let G be a group and let H be a normal subgroup of G. Verify that
(gH)a = gaH in G/H, for every a ∈ Z.

Proposition 3.25. Let G be an abelian group. Then every subgroup of G is normal in G.

Proof. Let H be any subgroup of G. Let g be any element of G and let h be any element
of H. Then ghg−1 = hgg−1 = h belongs to H, so H is normal in G. �

Remark 3.26. In general, an abelian subgroup H of a group G is not normal in G. For
instance, in the list (16) below, the subgroups H ′, H ′′ and H ′′′ of G = D6 are all abelian,
but they are not normal in G.

Remark 3.27. A subgroup H of a group G can be normal in G even if there is are elements
h of H and g of G for which ghg−1 6= h. For instance, in G = D6 we know from Exercise
2.50 that H = {1, r, r2} is normal in G, but

srs = r2 6= r and sr2s = r 6= r2.

Of course, the key point is that we still have the equality of sets

sHs = {1, r2, r} = H,

so that s normalises H.

Examples 3.28.
(i) The subgroups {1} and G of G are both normal in G, and there are canonical isomor-
phisms G/{1} ∼= G and G/G ∼= {1}. See also Examples 3.12 (ii) and (iii).
(ii) All the subgroups of G = D6 are

(16) G, H = {1, r, r2}, H ′ = {1, s}, H ′′ = {1, sr}, H ′′′ = {1, sr2} and {1}.

We know that both {1} and G are normal in G and we know from Exercise 2.50 that H is
normal in G but that H ′ is not normal in G, as

rH ′ = {r, sr2} 6= {r, sr} = H ′r.

In a similar way one can show that H ′′ and H ′′′ are not normal in G.
(iii) By Proposition 3.25, all subgroups of Z are normal. All the possible quotients of Z are
{0} = Z/Z, Z = Z/{0} and the finite cyclic groups Z/nZ for each natural number n 6= 1
(as 1Z = Z). Using Theorem 2.44, this description extends to any infinite cyclic group
G = 〈g〉. Explicitly, any non-trivial subgroup of G is of the form Hn = 〈gn〉 for n ∈ N,
which is necessarily normal in G, and one then has

G/Hn = {Hn, gHn, g
2Hn, . . . , g

n−1H}.

By Exercise 3.24, this quotient group is a cyclic group G/Hn = 〈gHn〉, that therefore has
isomorphism class Cn.
(iv) By Proposition 3.25, all subgroups of Cn are normal. Let Cn = 〈g〉. Using Theorem
2.44 and Remark 2.45, any non-trivial subgroup of Cn is of the form Hd = 〈gd〉 for natural
numbers d which divide n. One then has |Hd| = o(gd) = n/d and

Cn/Hd = {Hd, gHd, g
2Hd, . . . , g

d−1Hd}.
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By Exercise 3.24, this quotient group is a cyclic group Cn/Hd = 〈gHd〉, that therefore has
isomorphism class Cd. In particular

|Cn/Hd| = d = n/(n/d) = |Cn|/|Hd|.

Remark 3.29. From Examples 3.28 (iii) and (iv) we conclude that every quotient group
of a cyclic group is again a cyclic group. Moreover, if G = 〈g〉 and H is a subgroup of G
then G/H = 〈gH〉.

Exercise 3.30. Use Exercise 3.13 to show that the subgroup 〈−1〉 is normal in Q8. Which
other group is Q8/〈−1〉 isomorphic to?

Lemma 3.31. Let G be a group and let H be a subgroup of G whose index [G : H] in G is
equal to 2. Then H is normal in G and G/H has isomorphism class C2.

Proof. We use Corollary 2.56, Remark 2.57 and Remark 2.59, which tell us that the set of
left cosets of H in G is a partition of G, that the set of right cosets of H in G is also a
partition of G, that gH = H if and only if g belongs to H and that Hg = H if and only if
g belongs to H.

Now since [G : H] = 2, the set of left cosets of H in G must be {H,G\H}. From Remark
2.64 we also know that the set of right cosets of H in G must be {H,G \H}.

To conclude that H is normal in G we use Proposition 3.14. For each g in G, either g
belongs to H, in which case gH = H = Hg, or g belongs to G \H, in which case gH must
be equal to G \H and Hg must be equal to G \H, so that we again get gH = Hg. This
concludes the proof of the fact that H is normal in G.

Now G/H = {H,G \ H} is a group (of order 2) that is clearly cyclic, with generator
G \H, and thus has isomorphism class C2. �

Lemma 3.32. Let G be a group. Let m be a natural number. Assume that G has a unique
subgroup Hm that has order m. Then Hm is normal in G.

Proof. By Exercise 3.18 (i) and (iii), we know that for any g ∈ G, the conjugate gHmg
−1 of

Hm by g is a subgroup of G with the property that Hm
∼= gHmg

−1. Therefore |gHmg
−1| =

|Hm| = m and so, by uniqueness, we must have gHmg
−1 = H.

We have proved that every element g of G normalises Hm, so Exercise 3.18 (iv) implies
that Hm is normal in G. �

Remark 3.33. Please think about the fact that being a normal subgroup of a group
depends on both the subgroup and the group, not only on the subgroup. For instance, one
can have a group G, a subgroup H ≤ G of G and a normal subgroup N E H of H. In this
situation, N is a subgroup of G, but N may not be normal in G.

Moreover, the property of being a normal subgroup is not even transitive. Even if H E G
and N E H, the subgroup N may not be normal in G.

To see a counterexample to the possible transitivity of this property, we consider the
group G = D8, the subgroup

H := 〈s, r2〉 = {1, s, r2, sr2}
and the subgroup

N := 〈s〉 = {1, s}.
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Then H has index [G : H] = |G|/|H| = 8/4 = 2 in G and N has index [H : N ] = |H|/|N | =
4/2 = 2 in H, so Lemma 3.31 implies that H is normal in G and that N is normal in H.

However, N in not normal in G. To see this we simply note that rsr−1 = sr2 does not
belong to N .

Example 3.34. In G = S4, for each i ∈ {1, 2, 3, 4}, we consider the subset

Hi := {σ ∈ S4 : σ(i) = i}.
It is easy to see that Hi is a subgroup of S4: the identity permutation clearly belongs to Hi,
the inverse function of any element of Hi clearly must belong to Hi, and the composition
of two elements of Hi clearly must belong to Hi. However, Hi is not normal in S4.

We show that H1 is not normal in S4. One can write down identical arguments for
i = 2, 3, 4.

We fix any element τ of S4. Then every element σ of τH1 must satisfy σ(1) = τ(1).
Conversely, if σ is any element of S4 that satisfies σ(1) = τ(1) then

(τ−1σ)(1) = τ−1(τ(1)) = 1

so τ−1σ belongs to H1. We conclude that

τH1 = {σ ∈ S4 : σ(1) = τ(1)}.
Similarly, any element σ of H1τ must satisfy σ(τ−1(1)) = 1. Conversely, if σ is any

element of S4 that satisfies σ(τ−1(1)) = 1 then

(στ−1)(1) = 1

so στ−1 belongs to H1. We conclude that

H1τ = {σ ∈ S4 : σ(τ−1(1)) = 1}.
To finally conclude that H1 is not normal in S4 it is enough to find an element τ of S4

for which τH1 6= H1τ . Take, for example, τ = (1, 2). Then

τH1 = {σ ∈ S4 : σ(1) = 2}
while

H1τ = {σ ∈ S4 : σ(2) = 1}.
The element (1, 2, 3) of S4 then belongs to τH1 but not to H1τ , so that these sets cannot
be equal, as required.

The following Exercise uses Lemma 3.31 to show that a full converse to Lagrange’s
Theorem would not be true, by constructing a group of order 12 that has no subgroups of
order 6.

Exercise 3.35. We fix a group C2 = {e, f} of order 2 with identity e. We define an
associated function

sgn : S4 → C2

by setting sgn(σ) = e if σ is an even permutation and sgn(σ) = f if σ is an odd permutation.

(i) Prove that sgn is a group homomorphism, and thus that

A4 := ker(sgn)

is a group.
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(ii) Write down the cycle decomposition of each element of A4 and the order of each
of them. In particular, you should find that |A4| = 12. Deduce that, if H is any
subgroup of A4 of order 6, then H would be normal in A4 and A4/H would have
isomorphism class C2.

(iii) Show that, if H is any subgroup of A4 of order 6, then σ2 would belong to H for
every σ ∈ A4.

(iv) Prove that A4 cannot have a subgroup of order 6.

3.1.3. Centralisers and Normalisers. Throughout §3.1.2 we have seen numerous character-
isations of the property of a subgroup being normal in a group. In this section we introduce
some additional constructions that are helpful when analising this condition and will also
be of interest in the sequel.

Definition 3.36. Let G be a group and let S be a non-empty subset of G.

(i) We call
CG(S) := {g ∈ G : gsg−1 = s for all s ∈ S}

the ‘centraliser’ of S in G.
(ii) We call

Z(G) := CG(G)

the ‘centre’ of G.
(iii) We call

NG(S) := {g ∈ G : gSg−1 = S}
the ‘normaliser’ of S in G.

Exercise 3.37. Prove that CG(S) is a subgroup of NG(S) and that NG(S) is a subgroup
of G. In this way we thus also find that CG(S) is a subgroup of G and in particular that
Z(G) is a subgroup of G.

Exercise 3.38. Show that, if G is abelian, then CG(S) = NG(S) = G for any non-empty
subset S of G. In particular, we get Z(G) = G in this case.

Exercise 3.39. Show that CQ8({i}) = {±1,±i} and that NQ8({i}) = Q8. Determine
Z(Q8).

Exercise 3.40. Consider the subset S = {1, (1, 2)} of S3. Show that CS3(S) = NS3(S) = S
and that Z(S3) = {1}.

The normaliser of a subgroup measures how close it is to being normal, as evidenced by
the following criterion.

Proposition 3.41. Let G be a group and let H be a subgroup of G. Then H is normal in
G if and only if NG(H) = G.

Proof. Clearly NG(H) = G if and only if every element g of G normalises H, so the result
follows from Exercise 3.18 (iv). �

The centre of a group provides a natural source of normal subgroups of said group.

Lemma 3.42. If G is a group and H is a subgroup of Z(G) then H is normal in G. In
particular, Z(G) is a normal subgroup of G.
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Proof. Let h ∈ H and g ∈ G. Then g−1hg = g−1h(g−1)−1 = h since h belongs to Z(G),
and therefore ghg−1 = g(g−1hg)g−1 = h belongs to H. �

Notation 3.43. We sometimes abbreviate CG({s}) to CG(s).

3.2. The theorems.

3.2.1. The first isomorphism theorem. We have essentially already proved the first isomor-
phism theorem, sometimes also known as the fundamental theorem of homomorphisms.

Theorem 3.44. If f : G → J is a homomorphism of groups, then ker(f) is a normal
subgroup of G and there is a canonical isomorphism

f : G/ ker(f)
∼−→ im(f)

given by
f(g ker(f)) := f(g)

for each g ∈ G.
In particular, the index [G : ker(f)] is equal to the order of im(f) (whether finite or

infinite).

Proof. We know from Proposition 3.23 that ker(f) is a normal subgroup of G. The remain-
ing claims were proved in Corollary 3.8. �

Exercise 3.45. Give an alternative description of the isomorphism class of Gl2(R)/Sl2(R),
with Sl2(R) as defined in Exercise 2.78.

The following general fact, which we leave as an exercise for the reader, is very useful in
many settings.

Remark 3.46. Let G be a group, let H be a normal subgroup of G and let f : G→ J be
a group homomorphism. Then f induces a well-defined function f : G/H → J through the
formula f(gH) = f(g) if and only H is contained in ker(f).

If H is indeed contained in ker(f) then f is a group homomorphism with im(f) = im(f)
and with ker(f) = ker(f)/H.

3.2.2. The second isomorphism theorem. Before we can state the next isomorphism theorem
we must introduce some additional notation and preliminary results.

Definition 3.47. Let G be a group and let H and K be subgroups of G. We define a set

HK := {hk : h ∈ H, k ∈ K}.

Notation 3.48. In an abelian group G, if we wish to use additive notation, we will some-
times write H +K = {h+ k : h ∈ H, k ∈ K} instead of HK.

Proposition 3.49. If H and K are both finite subgroups of G then the cardinality of HK

is |H||K||H∩K| .

Proof. The set HK is the union of cosets

HK =
⋃
h∈H

hK.
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We know that the left cosets of K in G form a partition from Corollary 2.56 and also that
each such coset hK has |K| elements by Lemma 2.53. It is therefore enough to show that

there are |H|
|H∩K| distinct cosets of the form hK, h ∈ H.

To do this we note that, given h1, h2 ∈ H, one has h1K = h2K if and only if h−1
2 h1

belongs to K, which happens if and only if h−1
2 h1 belongs to H ∩K, which happens if and

only if h1(H ∩K) = h2(H ∩K). Therefore the number of distinct cosets of the form hK,
h ∈ H, is the same as the number of distinct cosets of the form h(H ∩ K), h ∈ H. By

Lagrange’s Theorem 2.61 we know that this last number is equal to |H|
|H∩K| , as required. �

Remark 3.50. Note that HK is not necessarily a subgroup of G! For example, in G = S3,
with H = 〈(1, 2)〉 = {1, (1, 2)} and K = 〈(2, 3)〉 = {1, (2, 3)} we have |H| = |K| = 2 and
|H ∩K| = 1 so Proposition 3.49 implies that HK has 4 elements. Since S3 has order 6 and
4 does not divide 6, Lagrange’s Theorem 2.61 implies that HK cannot be a subgroup of S3.

Proposition 3.51. Let G be a group and let H and K be subgroups of G. Then HK is a
subgroup of G if and only if HK = KH.

Proof. We assume first that HK = KH. We will prove that HK is then a subgroup of G
by applying the criterion of Lemma 2.6. We thus fix x, y ∈ HK. We must prove that xy−1

belongs to HK.
We write x = h1k1 and y = h2k2 with each hi in H and each ki in K. Then xy−1 =

h1k1k
−1
2 h−1

2 .

Now, since HK = KH we have (k1k
−1
2 )h−1

2 = h′k′ for some h′ ∈ H and k′ ∈ K. We
finally find that xy−1 = (h1h

′)k′, which belongs to HK, as required.
Conversely we now assume that HK is a subgroup of G. Clearly both H and K are

subsets (and in fact, subgroups) of the group HK. Therefore kh belongs to HK for any
h ∈ H and k ∈ K. This shows that KH ⊆ HK.

To find the converse inclusion and thus the required equality we fix h ∈ H and k ∈ K.
Since HK is a group, the inverse (hk)−1 of hk belongs to HK and may be written as h′k′

with h′ ∈ H and k′ ∈ K. Therefore

hk = ((hk)−1)−1 = (h′k′)−1 = (k′)−1(h′)−1.

This shows that hk must belong to KH. We conclude that HK ⊆ KH and thus that
HK = KH, as required. �

Remark 3.52. The equality of sets HK = KH does not imply that all elements of H
commute with all elements of K. For example in G = D2n with H = 〈r〉 and K = 〈s〉,
although one has rs = sr−1 so r and s do not commute, it is also easy to deduce from this
equality that HK = KH = G.

Corollary 3.53. If H and K are subgroups of G for which H is contained in NG(K), the
set HK is a subgroup of G.

In particular, given a normal subgroup K of G, the subset HK is a subgroup of G for
every subgroup H of G.

Proof. We assume that H is contained in NG(K) and we will show that HK = KH, so our
first claim will follow from Proposition 3.51.
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For any h ∈ H and k ∈ K, our assumption means that hkh−1 belongs to K. Therefore
hk = (hkh−1)h belongs to KH, which shows that HK ⊆ KH.

Similarly kh = h(h−1kh) with h−1kh in K by assumption, which shows that KH ⊆ HK.
The final claim is valid because, by Proposition 3.41, a normal subgroup K of G always

satisfies NG(K) = G. �

Corollary 3.54. Let H and K be normal subgroups of G. Then HK is a normal subgroup
of G.

Proof. From Corollary 3.53 we know that HK is a subgroup of G. Let g ∈ G, h ∈ H and
k ∈ K. Then

ghkg−1 = (ghg−1)(gkg−1)

where ghg−1 belongs to H and gkg−1 belongs to K. �

Exercise 3.55. In G = S4 we consider the subgroups H = D8 and K = 〈(1, 2, 3)〉. Use
Proposition 3.49, together with Lagrange’s Theorem 2.61, to prove that S4 = HK.

We finally get to the second isomorphism theorem (sometimes known as the ‘diamond
isomorphism theorem’, see [2, Thm. 18, p. 97]).

Theorem 3.56. Let G be a group and let H and K be subgroups of G for which H is
contained in NG(K). Then HK ≤ G, K E HK, (H ∩ K) E H and there is a canonical
isomorphism

H/(H ∩K) ∼= (HK)/K

which maps an element h(H ∩K) to hK.

Proof. By Corollary 3.53 we know that HK ⊆ G.
Since H is contained in NG(K) and K is always also contained in NG(K), we know that

HK must be contained in NG(K). Every element of the group HK therefore normalises
K (by definition of the normaliser NG(K)), so K must be normal in HK by Exercise 3.18
(iv).

We now show the remaining claims by applying the First Isomorphism Theorem 3.44. It
is enough to construct a surjective group homomorphism

f : H → (HK)/K

with ker(f) = (H ∩K) which corresponds with the given explicit description.
To do this we set f(h) := hK for each h ∈ H. Clearly f is a group homomorphism, as

for h, h′ ∈ H one has

f(h)f(h′) = (hK)(h′K) = (hh′)K = f(hh′)

by definition of the binary operation on the quotient group (HK)/K. (Alternatively, f is a
homomorphism ecause it is just the restriction of the natural projection HK → (HK)/K
to H.)

The map f is surjective because for any h ∈ H and any k ∈ K, the coset

(hk)K = (hK)(kK) = (hK)K = hK

is the image of h under f (in the second equality we have used Remark 2.57).
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We finally claim that ker(f) = (H ∩ K). Again by Remark 2.57, an element h of H
belongs to ker(f) if and only if it belongs to K, which happens if and only if it belongs to
H ∩K. This completes the proof. �

Exercise 3.57. In the setting of Theorem 3.56, prove directly that H ∩ K is a normal
subgroup of H, without applying the First Isomorphism Theorem 3.44.

3.2.3. The third isomorphism theorem. The third isomorphism theorem considers the struc-
ture of quotient groups of quotient groups.

Theorem 3.58. Let G be a group and let H and K be normal subgroups of G with H ⊆ K.
Then H is a normal subgroup of K, K/H is a normal subgroup of G/H and there is a
canonical isomorphism

((G/H)/(K/H)) ∼= G/K

which maps an element (gH)(K/H) to gK.

Proof. We know that H is normal in K because it is normal in G (and by definition of being
normal in a group).

We will prove the remaining claims by applying the First Isomorphism Theorem 3.44.
We define a function

f : G/H → G/K

by setting f(gH) := gK for each g ∈ G. This function is well-defined because if g1H = g2H
then

g−1
2 g1 ∈ H ⊆ K

so g1K = g2K.
The function f is clearly a group homomorphism and it is clearly surjective. To complete

the proof it is now enough to show that ker(f) = K/H. This equality is indeed valid, since

ker(f) = {gH ∈ G/H : gK = K} = {gH ∈ G/H : g ∈ K} = K/H.

�

Exercise 3.59. In the setting of Theorem 3.58, prove directly that K/H is a normal
subgroup of G/H, without applying the First Isomorphism Theorem 3.44.

3.2.4. The fourth isomorphism theorem. We finally get to the fourth isomorphism theorem
(sometimes known as the ‘lattice isomorphism theorem’, see [2, Thm. 20, p. 98,99], and
sometimes included within the First Isomorphism Theorem 3.44, see [1]). We leave the
proof of this result as an exercise for the reader.

Theorem 3.60. Let G be a group and let H be a normal subgroup of G. We consider the
sets

SHG := {J ≤ G : H ⊆ J}, SG/H := {L ≤ G/H}.
Then the function . : SHG → SG/H given by J := J/H is a bijection that has the following

properties for any J1, J2 ∈ SHG .

(i) J1 ⊆ J2 if and only if J1 ⊆ J2.
(ii) If J1 ⊆ J2 then [J2 : J1] = [J2 : J1].

(iii) 〈J1, J2〉 = 〈J1, J2〉.
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(iv) J1 ∩ J2 = J1 ∩ J2.
(v) J1 is normal in G if and only if J1 is normal in G = G/H.

Exercise 3.61. Prove Theorem 3.60.

Example 3.62. For G = Q8 and H = 〈−1〉 = {1,−1}, it is easy to prove that G/H is
equal to {1H, iH, jH, kH} and also isomorphic to Z/2Z × Z/2Z. From Example 2.10 we
then know that G/H has 5 distinct subgroups, and this includes G/H itself, the identity
subgroup, and 3 distinct subgroups of order 2. From Theorem 3.60 we know that the only
subgroups of G = Q8 that contain −1 are G, H, 〈i〉, 〈j〉 and 〈k〉.

Exercise 3.63. Find all subgroups of D8 that contain r2.

3.3. Simple groups and solvable groups. Before we discuss simple or solvable groups,
we prove a useful result that will be further generalised in §4.

3.3.1. Cauchy’s Theorem for abelian groups. We already mentioned Cauchy’s Theorem in
Remark 2.70(ii): if G is a finite group and p is a prime divisor of |G| then G has an element
of order p. For now, we restrict ourselves to prove this result for abelian groups G, a case
in which the proof becomes completely elementary.

Theorem 3.64. If G is a finite abelian group and p is a prime divisor of |G| then G has
an element of order p.

Proof. We prove the result by induction on |G|. If |G| = 1 then the result is trivial. We
henceforth assume that G 6= {1}. We assume that the result is valid for every finite abelian
group that has order strictly smaller than |G| and divisible by p; this will be our inductive
hypothesis.

We fix an element x 6= 1 of G. If |G| = p then, by Lagrange’s Theorem, we would have
o(x) = p, which would complete the proof. We henceforth assume that |G| 6= p and thus
that |G| > p.

If p divides o(x), say o(x) = pn for some n ∈ N, then by Proposition 2.40(ii) we would
have o(xn) = p, which would complete the proof. We henceforth assume that p does not
divide o(x).

We set H := 〈x〉, so p - |H|. Since G is abelian, H is normal in G. The quotient group
G/H is finite and abelian. By Lagrange’s Theorem, we have

|G/H| = |G|/|H|
and, since H 6= {1}, G/H has order strictly smaller that |G|. Since p does not divide |H| it
must divide |G/H|.

By the inductive hypothesis, G/H contains an element y = yH, for some y ∈ G, that
has order p. The element yH cannot be the identity, so y cannot belong to H, but ypH =
(yH)p = H, so yp must belong to H. The subgroup 〈yp〉 must be contained in H but the
subgroup 〈y〉 cannot be contained in H, so in particular 〈yp〉 6= 〈y〉. The inclusion 〈yp〉 ⊂ 〈y〉
of finite groups must therefore be strict.

It then follows that o(yp) < o(y). By Proposition 2.40(ii) p must therefore divide o(y).
Just as above, using once again Proposition 2.40(ii), a power of y then must have order
equal to p. Specifically, o(ym) = p where o(y) = pm. �
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3.3.2. Simple groups and composition series. Often one studies a group G through the use
of inductive arguments, by identifying a (non-trivial, proper) normal subgroup H of G,
studying first the groups H and G/H, which may have smaller order than G, and trying to
piece together the conclusions to obtain similar conclusions about G. We will see various
examples of this method of reasoning in the sequel. We just saw one in Theorem 3.64.

The following class of groups, despite what their name might suggest, make it particularly
complicated to try to argue in such a manner.

Definition 3.65. A (non-trivial) group G is called ‘simple’ if it has no normal subgroups,
other than {1} and G itself.

Exercise 3.66. Show that if a finite group has prime order then it is simple.

Exercise 3.67. Show that if an abelian group is simple then it has isomorphism class Cp
for some prime number p. (Hint: treat the infinite and finite cases separately, use Theorem
3.64 in the latter case.)

Remark 3.68. There are, however, non-abelian simple groups (both finite and infinite).
The finite simple groups have been fully classified. We will discuss a specific family of
such groups, the ‘alternating groups’, in §4 (you already encountered an alternating group,
namely A4, in Exercise 3.35). However, all such examples will be groups of even order: a
celebrated theorem of Feit and Thompson states that every finite simple group of odd order
has isomorphism class Cp for some prime number p (hence is, in particular, abelian).

Definition 3.69. In a group G, a finite sequence of subgroups

1 = N0 E N1 E N2 E . . . E Nk−1 E Nk = G

is called a ‘composition series’ if Ni+1/Ni is a simple group for every 0 ≤ i ≤ k− 1. In that
case, the quotient groups Ni+1/Ni are called ‘composition factors’ of G.

Remark 3.70. The given definition of a composition series does not require that each
subgroup Ni is normal in G. It requires Ni only to be normal in Ni+1. For example, in D8

we have the following two composition series:

(17) {1} E 〈s〉 E 〈s, r2〉 E D8 and {1} E 〈r2〉 E 〈r〉 E D8.

In both of these sequences, each subgroup Ni has index 2 in Ni+1, so Ni is indeed normal
in Ni+1 by Lemma 3.31, and the quotient Ni+1/Ni is simple simply because it has order 2.
However 〈s〉 is not normal in D8.

Remark 3.71. The Jordan-Hölder Theorem states that every finite group has a compo-
sition series, which is moreover unique, in a very strong sense. In particular, the natural
number k is uniquely defined, so it is no coincidence that k = 3 in both of the composition
series occurring in (17). See [2, Thm. 22, p. 103] for a precise statement of the Theorem.

Exercise 3.72. Find three composition series for Q8 and seven composition series for D8.

3.3.3. Solvable groups. We now introduce a class of groups that is of great in importance
in Galois theory.
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Definition 3.73. A group G is ‘solvable’ if there exists a finite sequence of subgroups

1 = N0 E N1 E N2 E . . . E Nk−1 E Nk = G

such that Ni+1/Ni is abelian for every 0 ≤ i ≤ k − 1.

Another example of how to piece together information about a normal subgroup and the
associated quotient into information about the actual group is given by the following useful
result.

Lemma 3.74. Let G be a group and let H be a normal subgroup of G. If both H and G/H
are solvable groups then G is a solvable group.

Proof. We set G := G/H and we fix sequences

1 = N0 E N1 E N2 E . . . E Nk−1 E Nk = H

and

H = M0 EM1 EM2 E . . . EMl−1 EMl = G

such that Ni+1/Ni is abelian for every 0 ≤ i ≤ k − 1 and such that Mi+1/Mi is abelian for
every 0 ≤ i ≤ l − 1.

By the Fourth Isomorphism Theorem 3.60 there are subgroups Mi of G that contain H
for which Mi/H = Mi and Mi E Mi+1 for every 0 ≤ i ≤ l − 1. By the Third Isomorphism
Theorem 3.58 we then also get that each quotient

Mi+1/Mi
∼= (Mi+1/H)/(Mi/H) = Mi+1/Mi

is abelian.
The sequence of subgroups

1 = N0 E N1 E N2 E . . . E Nk−1 E Nk = H = M0 EM1 EM2 E . . . EMl−1 EMl = G

finally shows that G is solvable. �

3.4. (More) Exercises. Don’t forget to think about the exercises given throughout the
rest of section 3.

Exercise 3.75. Let A be an abelian group and let B be a subgroup of A. Show that A/B
is abelian.

Exercise 3.76. Let G be a group and let H be a normal subgroup of G.

(i) Let g be an element of G for which gn belongs to H for some natural number n.
Prove that the order of gH in G/H is the minimum of {n ∈ N : gn ∈ H}.

(ii) Let g be an element of G for which gn /∈ H for each n ∈ N. Prove that gH has
infinite order in G/H.

(iii) Give an example of G, H and g with o(gH) < o(g) <∞.

Exercise 3.77. Let f : R∗ → R∗ be given by f(x) := |x| (the absolute value of x). Show
that f is a homomorphism and determine the image, the kernel, and all the fibres of f .

Exercise 3.78. Let f : C∗ → R∗ be given by f(x + yi) := x2 + y2. Show that f is a
homomorphism and determine the image, the kernel, and all the fibres of f .
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Exercise 3.79. Let f : Z/8Z → Z/4Z be given by f([a]8) := [a]4. Show that f is a
well-defined homomorphism and determine the image, the kernel, and all the fibres of f .

Exercise 3.80. Let f : Z/24Z→ Z/12Z be given by f([a]24) := [a]12. Show that f is a well-
defined homomorphism and that ker(f) is isomorphic to 12Z/24Z and also has isomorphism
class C2.

Exercise 3.81. Show that (
Z/4Z× Z/4Z

)
/〈([2], [2])〉

is isomorphic to Z/4Z× Z/2Z.

Exercise 3.82. Let F be Q,R or C. Let G be the subgroup of Gl2(F ) comprising upper
triangular matrices (with non-trivial determinant). Let f : G → F ∗ × F ∗ be the function
given by

f

(
a b
0 d

)
= (a, d).

Show that f is a surjective homomorphism and determine its fibres. Prove that ker(f) is
isomorphic to F .

Exercise 3.83. Let S1 be the unit circle in the complex plane (the multiplicative group
of complex numbers with absolute value equal to 1) and let f : R → S1 be the function
given by f(x) := e2πix. Show that f is a surjective homomorphism and determine the

fibres of 1,−1, i and e4πi/3. Repeat the same exercise for the function f : R→ S1 given by
f(x) := e4πix.

Exercise 3.84.
(i) Show that every coset of Z in Q contains exactly one rational number q for which
0 ≤ q < 1.
(ii) Show that every element of the quotient group Q/Z has finite order, but also that there
exist elements of arbitrarily large order.
(iii) Show that the function f : Q/Z→ R/Z given by f(qZ) = qZ is a well-defined injective
homomorphism.
(iv) Show that im(f) = (R/Z)tor, in the notation of Exercise 2.73.
(v) Show that Q/Z is isomorphic to µ := {z ∈ C : zn = 1 for some n ∈ N}.

Exercise 3.85. Let G be a group, let S be a generating set for G and let H be a normal
subgroup of G. Prove that {sH : s ∈ S} is a generating set for G/H.

Exercise 3.86. Show that D16/Z(D16) is isomorphic to D8. Show that

(D16/Z(D16)) /Z (D16/Z(D16))

is isomorphic to Z/2Z×Z/2Z. Show that H := 〈sZ(D16), r2Z(D16)〉 is a normal subgroup
of D16/Z(D16) and determine the isomorphism class of(

D16/Z(D16)
)
/H.

Exercise 3.87.
(i) Prove that the intersection of two normal subgroups of a group is a normal subgroup.
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(ii) Prove that the intersection of an arbitrary non-empty collection of normal subgroups of
a group is a normal subgroup.
(iii) Prove that if N E G and H ≤ G then N ∩H E H.

Exercise 3.88. Prove that a subgroup H of a group G is normal in G if and only if
gHg−1 ⊆ H for every g ∈ G.

Exercise 3.89. Set

H := {
(

1 a
0 1

)
: a ∈ Z}.

Show that H is a subgroup of Gl2(Q). Show that(
2 0
0 1

)
H

(
2 0
0 1

)−1

⊆ H.

Show that

(
2 0
0 1

)
does not normalise H.

Exercise 3.90. Let G be a group.

(i) Let S be a subset of G. Prove that 〈S〉 is normal in G if and only if

gSg−1 ⊆ 〈S〉
for every g ∈ G.

(ii) Given x ∈ G, show that 〈x〉 is normal in G if and only if for each g ∈ G, one has
gxg−1 = xa for some a ∈ Z.

(iii) Let n be a natural number and set

Sn := {g ∈ G : o(g) = n}.
Prove that Hn := 〈Sn〉 is normal in G.

Exercise 3.91. Let G be a group and let H be a finite subgroup of G.

(i) Show that an element g of G normalises H if and only if

gHg−1 ⊆ H.
(ii) Let S be a generating set for H. Show that an element g of G normalises H if and

only if

gSg−1 ⊆ H.
(iii) Let T be a generating set for G. Prove that H is normal in G if and only if

tSt−1 ⊆ H
for every t in T .

Exercise 3.92. Let G be a group. Show that ga belongs to CG({g}) and to NG({g}) for
any g ∈ G and any a ∈ Z.

Exercise 3.93. Consider the subset S = {1, r, r2, r3} of D8. Show that CD8(S) = S,
that ND8(S) = D8 and that Z(D8) = {1, r2}. Show that D8/Z(D8) is isomorphic to
Z/2Z× Z/2Z.
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Exercise 3.94. For n ≥ 3, show that Z(D2n) = {1} if n is odd and that Z(D2n) = {1, rn/2}
if n is even.

Exercise 3.95. Let G be a group. Show that CG(Z(G)) = NG(Z(G)) = G.

Exercise 3.96. Let H be a subgroup of a group G. Show that H is a subgroup of NG(H).
Prove that H is a subgroup of CG(H) if and only if H is abelian.

Exercise 3.97. Show that CG(〈g〉) = CG({g}) for any g ∈ G.

Exercise 3.98. Let H ≤ G and let N E H. Prove that H ≤ NG(N). Deduce that NG(N)
is the largest subgroup of G in which N is normal.

Exercise 3.99. Prove that every subgroup of Q8 is normal in Q8 and determine the iso-
morphism class of each quotient of Q8.

Exercise 3.100. Find all normal subgroups of D8.

Exercise 3.101. Let n ≥ 3 be a natural number and let k be a natural number dividing
n. Prove that 〈rk〉 is normal in D2n and that D2n/〈rk〉 is isomorphic to D2k.

Exercise 3.102. Let G be a group. Prove that if G/Z(G) is cyclic then G is abelian.

Exercise 3.103. Let G and J be groups. Prove that

HJ := {(g, 1) : g ∈ G}
is a normal subgroup of G× J and that

(G× J)/HJ
∼= J.

Exercise 3.104. Let A be an abelian group and set

D := {(a, a) : a ∈ A}.
Prove that D is a normal subgroup of A×A and that

(A×A)/D ∼= A.

Exercise 3.105. Prove that {(a, a) : a ∈ S3} is not normal in S3 × S3.

Exercise 3.106. Let G be a group,

(i) Let H be a normal subgroup of G. Prove that, given x and y in G, the elements
xH and yH of G/H commute if and only if the ‘commutator element’

[x, y] := x−1y−1xy

of x and y belongs to H.
(ii) Prove that the ‘commutator subgroup’ of G, defined as

G′ := 〈{[x, y] : x, y ∈ G}〉,
is normal in G, and also that the quotient group G/G′ is abelian.

Exercise 3.107. Let H and K be normal subgroups of a group G for which H ∩K = {1}.
Prove that any element of H commutes with any element of K.
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Exercise 3.108.
(i) Find a group G with a normal subgroup H of G for which both H and G/H are abelian
but G is not.
(i) Find a group G with a normal subgroup H of G for which both H and G/H are cyclic
but G is not.

Exercise 3.109. Let f : G1 → G2 be a group homomorphism.

(i) Show that for any subgroup H2 of G2, the pre-image f−1(H2) is a subgroup of G1.
(ii) Show that if in addition H2 is normal in G2 then f−1(H2) is normal in G1.

(iii) Show that if f is surjective and H1 is a normal subgroup of G1 then f(H1) is a
normal subgroup of G2. (We already knew, from Proposition 2.13, that the image
of any subgroup of G1 under any homomorphism G1 → G2 is always a subgroup of
G2.)

(iv) Show that if H1 is any subgroup of G1 that contains ker(f) then f−1(f(H1)) = H1.

Exercise 3.110. Let H ≤ K ≤ G. Prove that [G : H] = [G : K][K : H].

Exercise 3.111. Prove that S4 does not have any normal subgroups of order 8 or of order
3.

Exercise 3.112. Let G be a finite group, let H be a subgroup of G and let K be a normal
subgroup of G. Prove that if |H| and [G : K] are coprime then H is contained in K.

Exercise 3.113. Prove that if K is a normal subgroup of a finite group G and |K| is
coprime to [G : K], then K is the unique subgroup of G of order |K|.

Exercise 3.114. Let G be a group. Let A be an abelian subgroup that is normal in G and
let B be any subgroup of G. Prove that A ∩B is normal in AB.

Exercise 3.115. Let G be a group and let H be a normal subgroup of G whose index
[G : H] = p in G is a prime number. Prove that any subgroup K of G is either contained
in H or satisfies both G = HK and [K : (K ∩H)] = p.

Exercise 3.116. Let G1 and G2 be groups and let H1 and H2 be normal subgroups of G1

and of G2 respectively. Prove that H1 ×H2 is normal in G1 ×G2 and that

(G1 ×G2)/(H1 ×H2) ∼= (G1/H1)× (G2/H2).

Exercise 3.117. Let G be a group and let H and K be normal subgroups of G with the
property that G = HK. Prove that

G/(H ∩K) ∼= (G/H)× (G/K).

Exercise 3.118. Let p be a prime number and write

µp∞ := {z ∈ C : zp
n

= 1 for some n ∈ N}
for the group of p-power roots of unity. Prove that µp∞ is isomorphic to a quotient of µp∞
by a non-trivial subgroup of µp∞ .

Exercise 3.119. Use Cauchy’s Theorem 3.64 to prove that a finite abelian group has a
subgroup of order d for every positive divisor d of |G|.
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Exercise 3.120. Prove that subgroups and quotient groups of a solvable group are solvable.

Exercise 3.121. Let G be a finite group. Prove that the following conditions are equivalent
for G:

(i) G is solvable.
(ii) There exists a finite sequence of subgroups

1 = N0 E N1 E N2 E . . . E Nk−1 E Nk = G

such that Ni+1/Ni is cyclic for every 0 ≤ i ≤ k − 1.
(iii) All composition factors of G are of prime order.

Exercise 3.122. Prove, without using the Feit-Thompson Theorem, that the following
conditions are equivalent:

(i) Every finite group of odd order is solvable.
(ii) The only simple groups of odd order are those of prime order.
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4. Group actions and Sylow’s Theorem

4.1. Symmetric and Alternating groups. In this section we fix n ≥ 3 and we continue
the study of the symmetric groups Sn that we briefly started in §1.2.1, and we introduce
another important class of groups, the alternating groups An, which in particular serve as
our basic example of non-abelian simple groups.

Before proceeding we recall that for any non-empty set Ω we have defined the symmetric
group SΩ on Ω as the group of permutations of Ω. The following useful terminology will be
consistent with the new terminology that we will introduce in §4.2 below.

Definition 4.1. A group G is called a ‘permutation group’ if it is a subgroup of a symmetric
group SΩ for some non-empty set Ω.

4.1.1. Orders of permutations. Before introducing any new contents we briefly study the
order of a permutation.

Lemma 4.2. An m-cycle in Sn (for any m ≤ n) has order equal to m.

Proof. Clearly an m-cycle c = (a1, . . . , am) satisfies cm = 1. For k < m however, ck(a1) =
ak+1 6= a1 so ck 6= 1, which completes the proof. �

We already noted in (4) the very useful fact that disjoint cycles commute. Let us record
this fact formally for later use.

Lemma 4.3. Disjoint cycles commute.

Proof. Assuming the cycles σ = (a1, . . . , am) and τ = (b1, . . . , bm′) to be disjoint, the
function σ ◦ τ maps ai to σ(ai), maps bj to τ(bj), and fixes any number in {1, . . . , n} \
{a1, . . . , am, b1, . . . , bm′}. The same description holds for the function τ ◦ σ, so they are
equal. �

Exercise 4.4. Find a 10-cycle σ in S10 for which σk = (1, 2)(3, 4)(5, 6)(7, 8)(9, 10) for some
k ∈ N.

Exercise 4.5. Show that an element of Sn has order equal to 2 if and only if its cycle
decomposition is a product of 2-cycles.

Lemma 4.6. Let p be a prime number. An element of Sn has order equal to p if and only
if its cycle decomposition is a product of p-cycles.

Proof. We first recall that a non-trivial element g of a group has order p if and only if
gp = 1.

Now, if σ has cycle decomposition σ1 . . . σm then, because disjoint cycles commute by
Lemma 4.3, the cycle decomposition of σk is σk1 . . . σ

k
m for each k ∈ N.

The element σ has order p if and only the cycle decomposition of σp is the identity, and
by the above discussion, this happens if and only if σpi = 1 for each i, which happens if and
only if each σi has order p. By Lemma 4.2 this happens if and only each σi is a p-cycle, as
required. �

Exercise 4.7. Find a counterexample to Lemma 4.6 for an integer p that is not prime.
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Exercise 4.8. Assume that an element σ of Sn has cycle decomposition τ1 . . . τt. Prove
that o(σ) = lcm(length(τ1), . . . , length(τt)).

Exercise 4.9.
(i) Find all numbers m for which S5 contains an element of order m.
(ii) Find all numbers m for which S7 contains an element of order m.

4.1.2. Signs of permutations and Alternating Groups. We already mentioned the following
useful in Notation 1.27 (iii) terminology.

Definition 4.10. A 2-cycle in Sn is also called a transposition.

Lemma 4.11. Every element of Sn is a product of transpositions. More precisely, Sn = 〈T 〉
where T := {(i, j) : 1 ≤ i < j ≤ n} ⊂ Sn.

Proof. Any cycle has an equality of the form

(18) (a1, a2, . . . , am) = (a1, am)(a1, am−1)(a1, am−2) . . . (a1, a2).

Since any permutation is a product of cycles, it is also a product of transpositions. �

Remark 4.12. Although clearly every element of Sn can be expressed as a product of
transpositions, such decompositions are not unique. For instance in S3 one has

(1, 2, 3) = (1, 2)(2, 3) = (1, 3)(1, 2) = (1, 2)(1, 3)(1, 2)(1, 3).

In fact there is an infinite number of ways to write this permutation as a number of trans-
positions. However, it is impossible to write (1, 2, 3) as a product of an odd number of
transpositions!

Exercise 4.13. In S13, write (1, 12, 8, 10, 4)(2, 13)(5, 11, 7)(6, 9) as a product of transposi-
tions.

Exercise 4.14. Show that Sn is not abelian.

We now formally introduce the notion of the sign of a permutation.

Definition 4.15. Consider the polynomial

∆ = ∆(x1, . . . , xn) :=
∏

1≤i<j≤n
(xi − xj)

in n variables. For each σ in Sn we then define a polynomial

σ(∆) :=
∏

1≤i,j≤n
(xσ(i) − xσ(j)).

We then define the sign of σ to be

(19) sgn(σ) :=

{
+1, if σ(∆) = ∆,

−1, if σ(∆) = −∆.

We say that σ is even if sgn(σ) = 1 and that σ is odd if sgn(σ) = −1.

Lemma 4.16. The equality (19) defines a function on all of Sn, called the sign function.
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68 DANIEL MACÍAS CASTILLO

Proof. Fix σ ∈ Sn. Fix k and l with 1 ≤ k < l ≤ n. Recall that σ is a bijection from
{1, . . . , n} to itself, and write σ−1 for its inverse. If σ−1(k) < σ−1(l) then σ(∆) has a factor
xk − xl, but cannot have a factor xl − xk. If on the other hand σ−1(k) > σ−1(l) then σ(∆)
has a factor xl − xk, but cannot have a factor xk − xl.

Write t(σ) for the cardinality of the set {(k, l) : 1 ≤ k < l ≤ n, σ−1(k) > σ−1(l)}. Then
σ(∆) is the product

∏
1≤k<l≤n±(xk−xl), in which the minus sign occurs exactly t(σ) times.

Therefore

(20) σ(∆) = (−1)t(σ)
∏

1≤k<l≤n
(xk − xl) = (−1)t(σ)∆ ∈ {±∆}.

This shows that sgn does assign a value to σ, as required. �

Remark 4.17. In the sequel we will use the notation t(σ) for the cardinality of the set

{(i, j) : 1 ≤ i < j ≤ n, σ−1(i) > σ−1(j)}, so that (20) shows that sgn(σ) = (−1)t(σ).

Exercise 4.18. In S4 we consider σ = (1, 2, 3, 4) and τ = (4, 2, 3). Compute sgn(τ), sgn(σ)
and sgn(τσ).

In the next result we interpret {±1} as a group under the usual multiplication (which
gives it isomorphism class C2 as it has order 2).

Proposition 4.19. The function sgn : Sn → {±1} is a surjective group homomorphism,
and all transpositions are odd.

Proof. By Remark 4.17, to verify that sgn is a homomorphism it is enough to prove that

(21) t(σ) + t(σ′) ≡ t(σσ′) (mod 2)

for any σ, σ′ ∈ Sn, since then sgn(σ) sgn(σ′) = (−1)t(σ)+t(σ′) = (−1)t(σσ
′) = sgn(σσ′).

To prove the required congruence relation we recall that (σσ′)−1 = (σ′)−1σ−1. Using this
equality, a case by case analysis of the possible parities of t(σ) and t(σ′) easily shows the
required congruence (21).

From the fact that sgn is a homomorphism it follows that sgn(1) = 1, so if we can prove
that all transpositions are odd, then in particular sgn is surjective.

We first compute sgn((1, 2)). It is clear that {(i, j) : 1 ≤ i < j ≤ n, (1, 2)(i) > (1, 2)(j)} =
{(1, 2)} so t((1, 2)) = 1 and sgn((1, 2)) = −1.

Let (k, l) be any transposition in Sn. Then

(k, l) = (1, k)(2, l)(1, 2)(1, k)(2, l)

and, since sgn is a homomorphism, we get that

sgn((k, l)) = sgn(((1, k)(2, l))(1, 2)((1, k)(2, l)))

= sgn((1, k)(2, l)) sgn((1, 2)) sgn((1, k)(2, l))

=(−1) sgn((1, k)(2, l))2

=− 1,

as required. �
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Corollary 4.20. For a given element σ of Sn, the parity of the number of transpositions
in every expression of σ as a product of transpositions is the same. In particular, σ is even
if this parity is even and σ is odd if this parity is odd.

Proof. By Proposition 4.19 we know that sgn(σ) = (−1)k whenever σ can be expressed as a
product of k transpositions. Therefore the parity of k cannot depend on the choice of such
an expression, and corresponds to whether σ is even or odd. �

Corollary 4.21. An m-cycle is even if m is odd and odd if m is even.

Proof. This follows upon combining Proposition 4.19 with (18), as they imply that

sgn((a1, . . . , am)) = (−1)m−1.

�

Corollary 4.22. A permutation is odd if and only if the number the number of cycles of
even length in its cycle decomposition is odd.

Proof. This follows immediately upon combining Proposition 4.19 and Corollary 4.21. �

Example 4.23. In S18, the permutation

(1, 2, 3, 4, 5, 6)(7, 8, 9)(10, 11)(12, 13, 14, 15)(16, 17, 18)

is odd, but the permutation

(1, 2, 3, 4, 5, 6)(7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18)

is even.

Definition 4.24. The ‘alternating group of degree n’ is

An := ker (sgn : Sn → {±1}) ,
which is the (normal) subgroup of Sn comprising even permutations.

Lemma 4.25. |An| = n!/2.

Proof. By the First Isomorphism Theorem 3.44, we know that An is normal in Sn and
we have an isomorphism Sn/An ∼= im(sgn) = {±1}, which implies that 2 = |Sn/An| =
|Sn|/|An|. We already know that |Sn| = n! by Lemma 1.26, which completes the proof. �

Exercise 4.26. Prove that A3 has isomorphism class C3.

Exercise 4.27. Prove that A4 is not abelian.

4.2. Group actions.

4.2.1. Definitions, examples and general properties.

Definition 4.28. Let G be a group and let A be a non-empty set. A ‘group action’ of G
on A is a function

· : G×A→ A

which, abbreviating ·(g, a) to g · a, satisfies the following properties:

(A1) g1 · (g2 · a) = (g1g2) · a for all g1, g2 ∈ G,a ∈ A.
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(A2) 1 · a = a for every a ∈ A.

We say that ‘G acts on A via ·’, or simply that ‘G acts on A’ when the action is clear from
the context.

Notation 4.29. The expression g · a is often further abbreviated to ga.

Remark 4.30. To be more precise, we should have defined the function · to be a ‘left group
action’ or a ‘group action from the left’, as there exists an analogous notion of a right group
action, which we will not use here.

Recall that SA is the set of permutations of a set A.

Definition 4.31. The ‘permutation representation’ associated to a group action of G on
A is the function

ρ : G→ SA

which, after abbreviating ρ(g) to ρg, is defined by

(22) ρg(a) := g · a
for each g ∈ G and each a ∈ A.

For this definition to make sense we must immediately verify that each function ρg is
indeed a permutation of A!

Lemma 4.32. Let G act on A. Then for every g ∈ G, the function ρg : A→ A defined by
(22) belongs to SA.

Proof. It is enough to show that ρg has a double-sided inverse, which will be ρg−1 .
For any a ∈ A we have

(ρg−1 ◦ ρg)(a) = ρg−1(ρg(a)) = ρg−1(g · a) = g−1 · (g · a) = (g−1g) · a = 1 · a = a.

This proves that ρg−1 ◦ρg = idA. The same argument shows that ρg◦ρg−1 = ρ(g−1)−1 ◦ρg−1 =
idA, so ρg−1 is indeed a double-sided inverse of ρg. �

The permutation representation ρ is in fact a group homomorphism.

Lemma 4.33. Let G act on A. Then the function ρ : G→ SA is a group homomorphism.

Proof. For every g1, g2 ∈ G and a ∈ A we have

(ρ(g1g2))(a) = ρg1g2(a) = (g1g2) · a = g1 · (g2 · a)

= g1 · ρg2(a) = ρg1(ρg2(a)) = (ρg1 ◦ ρg2)(a) = (ρ(g1) ◦ ρ(g2))(a).

This means that ρ(g1g2) = ρ(g1) ◦ ρ(g2), as required. �

Exercise 4.34. Let G be a group and let A be a non-empty set. Let f : G → SA be a
group homomorphism. Prove that the function G×A→ A given by

(23) g · a := (f(g))(a)

is a group action of G on A. Conclude that the set of group actions of G on A and the set
of group homomorphisms G→ SA are in bijective correspondence.
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Definition 4.35. Given a group G, and following Exercise 4.34, we define a ‘permutation
representation of G’ to be a homomorphism f : G→ SA for any non-empty set A. We shall
say that the action (23) of G on A ‘induces’ the associated permutation representation f .

Examples 4.36.
(i) The ‘trivial action’ of G on A is g · a = a for every g ∈ G and a ∈ A. The associated
permutation representation is the trivial homomorphism G→ SA which maps every g ∈ G
to 1A.
(ii) Let F be either Q, R or C (or any field) and let V be a vector space over F . Then the
multiplicative roup F ∗ acts on V via scalar multiplication. In particular, in this way, F ∗

acts on F .
(iii) For any non-empty set A, the group G = SA acts on A via evaluation, g · a = g(a).
The associated permutation representation is the identity homomorphism SA → SA.
(iv) The group G = D2n also acts on A = {1, . . . , n} via evaluation. The associated
permutation representation is the inclusion D2n ⊆ Sn. This action has a natural geometric
interpretation, by identifying the set A with the set of vertices of a regular n-gon: evaluation
of an element of G = D2n then simply means applying the corresponding symmetry to the
n-gon.
(v) Any group G acts on the set A = G via left multiplication, g · g′ = gg′. This action is
called the (left) regular action of G on itself.

Definition 4.37. The subgroup {g ∈ G : g · a = a for all a ∈ A} of G is the ‘kernel of the
action of G on A’.

Exercise 4.38. Prove that the kernel of the action of G on A is equal to the kernel of the
associated permutation representation ρ. Determine the kernel of each action described in
Examples 4.36.

Exercise 4.39. Let G be a group and consider the set A = G.

(i) Find an example of group G for which the formula g · a = ag does not define an
action of G on itself.

(ii) Show that the formula g · a = ag−1 does define an action of G on itself. Describe
the associated permutation representation.

(iii) Show that the formula g · a = gag−1 does define an action of G on itself, called the
‘conjugation action’. Describe the associated permutation representation and the
kernel of the action.

(iv) Given an action of G on A and a subgroup H of G, show that H acts on A via the
restriction of the original action, with associated permutation representation of H
given by the restriction of the permutation representation of G.

(v) In particular, any subgroup H of G acts on A = G via left multiplication, h ·
a = ha, and via conjugation, h · a = hah−1. Describe the associated permutation
representations.

Definition 4.40. Let G act on A. For each a ∈ A, the ‘stabiliser’ of a in G is the set

Ga := {g ∈ G : g · a = a}.

Lemma 4.41. For any a ∈ A, the subset Ga is a subgroup of G.
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Proof. By the axiom (A2) we know that 1 belongs to Ga.
If g, h belong to Ga then

(gh) · a = g · (h · a) = g · a = a,

so gh belongs to Ga.
Finally, if g belongs to Ga then

a = 1 · a = (g−1g) · a = g−1 · (g · a) = g−1 · a,

so g−1 also belongs to Ga. �

Example 4.42. In Example 3.34 we showed that the subgroup {σ ∈ S4 : σ(1) = 1} is not
normal in S4. This subgroup is the stabiliser G1 of 1 ∈ A of the action via evaluation of
G = S4 on the set A = {1, 2, 3, 4}, as described in Examples 4.36 (iii).

More generally, one can prove that for the action via evaluation of G = Sn on the set
A = {1, . . . , n} and for any i ∈ A, the stabiliser

Gi = {σ ∈ Sn : σ(i) = i}

of i is not normal in G = Sn. In fact, one can show that NG(Gi) = Gi so, in some sense,
Gi is as far from being normal in Sn as possible.

Exercise 4.43. Prove that for the action via evaluation of G = Sn on the set A = {1, . . . , n}
and for any i ∈ A, the stabiliser Gi of i is not normal in G = Sn. Prove also that Gi is
isomorphic to Sn−1.

Exercise 4.44. For the action via evaluation of G = D8 on the set A = {1, 2, 3, 4}, find
the stabiliser of every element of A.

Proposition 4.45. Let G act on A. Then the binary relation on A defined by a ∼ b if
a = g · b for some g ∈ G is an equivalence relation. In addition for each a ∈ A, the
cardinality of the equivalence class [a] of a under ∼ is [G : Ga].

Proof. The relation ∼ is reflexive because a = 1 · a by (A2).
If a ∼ b with a = g · b then

b = 1 · b = (g−1g) · b = g−1 · (g · b) = g−1 · a,

so b ∼ a. The relation is thus symmetric.
If a ∼ b and b ∼ c with a = g · b and b = h · c then a = g · (h · c) = (gh) · c so a ∼ c. The

relation is thus transitive and therefore an equivalence relation, as required.
We now compute the cardinality of [a] = {g · a : g ∈ G}. It is enough to construct a

bijection from [a] to the set of left cosets of Ga in G.
We first claim that mapping g · a to gGa for any g ∈ G gives a well-defined injection.

Indeed, for elements g, h of G, one has g · a = h · a if and only if the element h−1 · (g · a) =
(h−1g) · a is equal to a, if and only if h−1g belongs to Ga, if and only if gGa = hGa.

Knowing that (g · a) 7→ gGa is a well-defined map, it is also clearly surjective, thus gives
a bijection between [a] and the set of left cosets of Ga in G. This proves that the cardinality
of [a] is [G : Ga]. �
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Definition 4.46.
(i) For each a ∈ A, the equivalence class [a] = {g · a : g ∈ G} is called to ‘orbit’ of a in G.
We sometimes denote it by OGa or simply by Oa when G is clear from context.
(ii) The action of G on A is called ‘transitive’ if for every pair a, b in A there exists a g ∈ G
with a = g · b.
(iii) For any subgroup H of Sn, the ‘orbits of H’ will be the orbits of the elements of
A = {1, . . . , n} in H under the evaluation action of H (obtained as the restriction of the
evaluation action of Sn). For any σ ∈ Sn, the ‘orbits of σ’ will be the orbits of 〈σ〉.

Exercise 4.47. Show that the action of G is transitive if and only if Oa = Ob for every
a, b ∈ A, and that the action of G is transitive if and only if Oa = G for every a ∈ A.

Exercise 4.48. Prove that the evaluation action of G = Sn on A = {1, . . . , n} is transitive.

Remark 4.49. Recall from Exercise 4.39 that if G acts on A then any subgroup H of G
acts on A via the restriction of the original action. However, even if the original action of
G is transitive, the action of H need not be transitive.

For instance we consider the evaluation action of G = S4 on A = {1, 2, 3, 4} and we
set H := 〈(1, 2), (3, 4)〉. We know from Exercise 4.48 that the action of G is transitive.
However, for the action of H we have the orbit

OH1 = {h(1) : h ∈ H} = {1, 2}
of 1 ∈ A and the orbit

OH3 = {h(3) : h ∈ H} = {3, 4}
of 3 ∈ A, so there is more than one orbit for this action and it is not transitive.

Exercise 4.50. Find all the orbits of the action of the cyclic subgroup H = 〈(1, 2)(345)〉
of G = S5 on A = {1, 2, 3, 4, 5}.

4.2.2. Cycle decompositions. In §1.2.1 we already explained that every element of Sn has
a cycle decomposition, and that this decomposition is unique, up to re-ordering of the
(disjoint) cycles (we know disjoint cycles commute by Lemma 4.3), and obviously also up
to choosing which number to write first within each individual cycle (since (a1, . . . , am) =
(ai, ai+1, . . . , am, a1, . . . , ai−1)). See also [2, p. 30] for an algorithm that leads to the cycle
decomposition of any permutation.

In this section we use the theory of group actions to give an alternative justification of
the existence and uniqueness of cycle decompositions.

Fix σ ∈ Sn and set H := 〈σ〉 and A := {1, . . . , n}. By Proposition 4.45 we know that the
set {OHa : a ∈ A} is a partition of A.

We fix a ∈ A and write Ha for the stabiliser of a in H. From the proof of Proposition
4.45 we also know that there is a (well-defined) bijection between OHa and the set of left
cosets of Ha in H, given by

σi(a) 7→ σiHa.

Since Ha is cyclic it is abelian, so Ha is normal in H, and the given bijection is between
OHa and H/Ha. Moreover H/Ha is a cyclic group of order d := [H : Ha] = |H/Ha| = |OHa |.
We conclude that

OHa = {a, σ(a), σ2(a), . . . , σd−1(a)}.
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The above argument shows that σ cycles the elements of any given orbit OH . Put another
way, given an orbit OH of cardinality dOH , σ acts on its elements as a dOH -cycle.

Since that set of orbits OH is a partition of A, we obtain a decomposition of σ into
disjoint cycles by simply composing the dOH -cycles corresponding to each different orbit
OH .

Now, these orbits are uniquely determined by σ, although of course we may compose their
associated cycles in whichever order we wish (again, disjoint cycles commute by Lemma 4.3).

Within each orbit OH we may begin with any element b ∈ OH as a representative.
Choosing some σi(a) ∈ OHa as the initial representative of the orbit OHa = OH

σi(a)
instead of

a, we simply end up re-ordering the elements of OHa as

σi(a), σi+1(a), . . . , σd−1(a), a, σ(a), . . . , σi−1(a).

This change in the corresponding cycle simply amounts to writing a different number in
first place.

4.2.3. Left multiplication action and Cayley’s Theorem. We recall that any group G acts
on itself (the set A = G) via left multiplication, meaning that

g · a := ga

for any g, a ∈ G. This action is sometimes called the ‘(left) regular action’ of G. We write ρ
for the associated permutation representation, which is sometimes called the ‘(left) regular
representation’ of G.

If G is a finite group then any choice of bijection α between G and {1, . . . , |G|} induces
an isomorphism α∗ : SG ∼= S|G|, given by

(α∗(σ))(i) = (α ◦ σ ◦ α−1)(i)

for every σ ∈ SG and every i ∈ {1, . . . , |G|}. In this way we may then identify the permuta-
tion representation ρ with a homomorphism G→ S|G|, and often omit the choice of α from
the notation.

Example 4.51. Let G = Z/2Z × Z/2Z and set α((0, 0)) = 1, α((0, 1)) = 2, α((1, 0)) = 3
and α((1, 1)) = 4. We identify ρ with a homomorphism G → S4. Obviously ρ(0, 0) = 1.
We compute the remaining values of ρ.

We have
ρ((0, 1))(1) = ρ((0, 1))(0, 0) = (0, 1) + (0, 0) = (0, 1) = 2,

ρ((0, 1))(2) = ρ((0, 1))(0, 1) = (0, 1) + (0, 1) = (0, 0) = 1,

ρ((0, 1))(3) = ρ((0, 1))(1, 0) = (0, 1) + (1, 0) = (1, 1) = 4,

ρ((0, 1))(4) = ρ((0, 1))(1, 1) = (0, 1) + (1, 1) = (1, 0) = 3,

ρ((1, 0))(1) = ρ((1, 0))(0, 0) = (1, 0) + (0, 0) = (1, 0) = 3,

ρ((1, 0))(2) = ρ((1, 0))(0, 1) = (1, 0) + (0, 1) = (1, 1) = 4,

ρ((1, 0))(3) = ρ((1, 0))(1, 0) = (1, 0) + (1, 0) = (0, 0) = 1,

ρ((1, 0))(4) = ρ((1, 0))(1, 1) = (1, 0) + (1, 1) = (0, 1) = 2,

ρ((1, 1))(1) = ρ((1, 1))(0, 0) = (1, 1) + (0, 0) = (1, 1) = 4,

ρ((1, 1))(2) = ρ((1, 1))(0, 1) = (1, 1) + (0, 1) = (1, 0) = 3,
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ρ((1, 1))(3) = ρ((1, 1))(1, 0) = (1, 1) + (1, 0) = (0, 1) = 2,

ρ((1, 1))(4) = ρ((1, 1))(1, 1) = (1, 1) + (1, 1) = (0, 0) = 1.

So we find

ρ((0, 1)) = (1, 2)(3, 4), ρ((1, 0)) = (1, 3)(2, 4) and ρ((1, 1)) = (1, 4)(2, 3).

Please observe that this action is transitive and also that the stabiliser of each element
of G is {1}, and therefore the kernel of the action and of the associated representation is
also trivial.

Proposition 4.52. The (left) regular action of any group G is transitive, the stabiliser of
each element of G is trivial and the kernel of this action, or equivalently of the (left) regular
representation, is also trivial.

Proof. For any a, b ∈ G we have a = (ab−1)b, so the action is transitive.
For any a in G, the stabiliser Ga = {g ∈ G : ga = a} is trivial by the usual cancellation

property.
Finally, the kernel of the action is clearly equal to

⋂
a∈GGa, which is trivial since each

Ga is. �

We may now easily deduce Cayley’s Theorem from Proposition 4.52.

Theorem 4.53. Every group is isomorphic to a permutation group. In particular, if G is
a finite group then G is isomorphic to a subgroup of S|G|.

Proof. It is enough to prove that any group G is isomorphic to a subgroup of SG. The final
claim would then also follow because if G is finite then SG is isomorphic to S|G|.

Now the (left) regular representation

ρ : G→ SG

is injective by Proposition 4.52, so it defines an isomorphism from G to im(ρ). This com-
pletes the proof. �

Remark 4.54. Of course, Cayley’s Theorem does not state that G is isomorphic to SG,
which would be a blatantly false statement. For instance, in Example 4.51 we showed that
Z/2Z× Z/2Z is isomorphic to the subgroup

{1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}
of S4. It certainly cannot, however, be isomorphic to S4.

Exercise 4.55. Let G be a group and let H be a subgroup of G. Write A for the set of
left cosets of H in G.

(i) Prove that G acts via left multiplication on the set A,

g · (g′H) := (gg′)H.

(ii) Prove that this action is transitive.
(iii) Prove that the stabiliser of H ∈ A is H ⊆ G.
(iv) Prove that the kernel of the action is

⋂
g∈G gHg

−1.

(v) Prove that the kernel of the action is the largest normal subgroup of G contained
in H.
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We use Exercise 4.55 to prove a generalisation of Lemma 3.31.

Lemma 4.56. Let G be a finite group. Let p be the smallest prime divisor of |G|. Then
any subgroup of G of index p is normal in G.

Proof. Let H be a subgroup of G of index p. Let K be the kernel of the action of G on the
set A of left cosets of H in G. By assumption, A has cardinality p. By Exercise 4.55 (v),
K is contained in H, and we set k := [H : K]. It will be enough to prove that k = 1, since
then H = K is normal in G.

We first note that the permutation representation ρ : G→ SA ∼= Sp induces, by the First
Isomorphism Theorem 3.44, an isomorphism

G/K ∼= im(ρ).

Since
|G/K| = [G : K] = [G : H][H : K] = pk,

the subgroup im(ρ) of Sp has order pk. By Lagrange’s Theorem 2.61 we get that pk divides
p!.

It follows that k divides p!/p = (p − 1)!. Since all prime divisors of (p − 1)! are smaller
than p, all prime divisors of k are smaller than p.

On the other hand, if ` is a prime divisor of k then ` also divides

[G : H]k|K| = [G : H][H : K][K : {1}] = |G|,
which would contradict the minimality of p. Therefore k has no prime divisors, or equiva-
lently k = 1, as required. �

Remark 4.57. In the setting of Lemma 4.56, there might not be any subgroups of G of
index p. For example, A4 has order 12 but no subgroups of index 2. In such cases, the
Lemma does not say anything.

4.2.4. Conjugation action and the class equation. We recall that any group G also acts on
itself (the set A = G) via conjugation, meaning that

g · a := gag−1

for any g, a ∈ G. Indeed, one has both

g1 · (g2 · a) = g1 · (g2ag
−1
2 ) = g1g2ag

−1
2 g−1

1 = (g1g2)a(g1g2)−1 = (g1g2) · a
and also 1 · a = 1a1−1 = 1a1 = a.

Definition 4.58. The orbits of G under the conjugation action are called the ‘conjugacy
classes’ of G. (Two elements a and b of G are conjugate if and only if they belong to the
same conjugacy class.)

Examples 4.59. (i) If G is abelian then the conjugation action of G coincides with the
trivial action of G on G, as g · a = gag−1 = a for every g and a.
(ii) If G is non-trivial then the conjugation action of G is never transitive: the conjugacy
class O1 of 1 is

O1 = {g · 1 : g ∈ G} = {g1g−1 : g ∈ G} = {1},
so it cannot be equal to G.
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(iii) We compute all conjugacy classes in S3. We have O1 = {1}. We have 1·(1, 2) = (1, 2) =
(1, 2) · (1, 2), (1, 3) · (1, 2) = (2, 3) = (1, 2, 3) · (1, 2), (2, 3) · (1, 2) = (1, 3) = (1, 3, 2) · (1, 2),
so we get

O(1,2) = {(1, 2), (1, 3), (2, 3)}.
We know (1, 2, 3) belongs to O(1,2,3) so it is enough to determine whether (1, 3, 2) belongs
to this same conjugacy class or not. One finds that (1, 2) · (1, 3, 2) = (1, 2, 3) so we only get
a a third conjugacy class

O(1,2,3) = {(1, 2, 3), (1, 3, 2)}.
Exercise 4.60. Prove that an element a of G belongs to Z(G) if and only if its conjugacy
class Oa is equal to {a}, if and only if the conjugacy class of a is a singleton. Deduce that
the conjugation action of G restricts to define a conjugation action of G on the set G\Z(G).

Proposition 4.61. The conjugacy class of any element g of G has cardinality [G : CG(g)].

Proof. By Proposition 4.45 we know that the conjugacy class of g has cardinality [G : Gg],
where Gg denotes the stabiliser of g under the conjugation action. But clearly Gg =
CG(g). �

Exercise 4.62. Let G be a group. We write A(G) for the set of subsets of G. We define a
‘conjugation action of G on A(G)’ by setting

(24) g · S := gSg−1

for any g ∈ G and any S ∈ A(G). Two subsets of G are conjugate if and only if they belong
to the same orbit under this action.

(i) Verify that (24) does indeed define an action of G on A(G).
(ii) Prove that the number of conjugates of a subset S of G is [G : NG(S)].

We now apply Proposition 4.61 to obtain the ‘Class Equation’. Before stating this result,
we recall from Exercise 4.60 that any element a of Z(G) has conjugacy class {a}, and thus
that the conjugation action of G restricts to define a conjugation action of G on the set
G \ Z(G).

Theorem 4.63. Let G be a finite group and let g1, . . . , gr be a set of representatives of the
distinct conjugacy classes of G \ Z(G). Then

(25) |G| = |Z(G)|+
i=r∑
i=1

[G : CG(gi)].

Proof. Let Z(G) = {z1, z2, . . . , zm}. Let K1,K2, . . . ,Kr be the distinct conjugacy classes of
G\Z(G), each with representative gi for 1 ≤ i ≤ r (meaning that Ki = Ogi is the conjugacy
class of gi). Then the full set of conjugacy classes of G is

{z1}, {z2}, . . . , {zm},K1,K2, . . . ,Kr,
which is a partition of G (by Proposition 4.45). Therefore

|G| = (

i=m∑
i=1

1) + (

i=r∑
i=1

|Ki|) = |Z(G)|+
i=r∑
i=1

[G : CG(gi)],

where we have used that the cardinality of Ki is [G : CG(gi)] by Proposition 4.61. �
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78 DANIEL MACÍAS CASTILLO

Examples 4.64. (i) If G is abelian then Z(G) = G and therefore the Class Equation is
the trivial statement |G| = |G|.
(ii) In any group G and for any g ∈ G we have 〈g〉 ≤ CG(g), and for any g ∈ G \ Z(G) we
have CG(g) 6= G. This observation helps compute conjugacy classes. For instance in G = Q8

we have Z(Q8) = {±1}. We have i /∈ Z(Q8), so CQ8(i) 6= Q8, and also 〈i〉 ≤ CQ8(i) ≤ Q8

with [Q8 : 〈i〉] = 2. Therefore CQ8(i) = 〈i〉 and the conjugacy class of i has cardinality
2, meaning it is {±i} (since −i = kik−1) and contains no other elements. Similarly one
computes that the conjugacy class of j is {±j} and the conjugacy class of k is {±k}.
(iii) In G = D8 we have Z(D8) = {1, r2}. We have 〈r〉 ≤ CD8(r) ≤ D8 with [D8 : 〈r〉] = 2
so CD8(r) = 〈r〉 and the conjugacy class of r has cardinality 2, meaning it is {r, r3} (since
r3 = srs) and contains no other elements. For the element s of D8 we could a priori either
have CD8(s) = 〈s〉 = {1, s} or |CD8(s)| = 4, but clearly r2 belongs to CD8(s), so it must be
the latter situation. Thus [D8 : CD8(s)] = 2 and the conjugacy class of s is {s, sr2} (since
sr2 = rsr−1). There are two remaining elements in D8, namely sr and sr3, and they must
form the final conjugacy class {sr, sr3} together, as neither of them is in Z(D8) and thus
neither of them can form a conjugacy class as a singleton.

We now give some important applications of the Class Equation.

Theorem 4.65. Let G be a group whose order is a power of a prime number. Then
Z(G) 6= {1}.

Proof. Let |G| = pn for some n ∈ N. For any g ∈ G \ Z(G) we know CG(g) 6= G, and since
[G : CG(g)] divides |G| it must be a power of p. Now in the Class Equation 25 p divides

both |G| and
∑i=r

i=1[G : CG(gi)] so it must also divide |Z(G)|, which is thus greater that
1. �

Corollary 4.66. If p is a prime and G is a group of order p2, then G is abelian and its
isomorphism class is either Cp2 or Cp × Cp.

Proof. Since Z(G) 6= {1} by Theorem 4.65, the quotient G/Z(G) can only have order 1 or
p, and is therefore cyclic either way. By Exercise 3.102 we then know that G is abelian.

If G has an element of order p2 then G is cyclic and hence has isomorphism class Cp2 .
Otherwise, every x 6= 1 in G must have order p. We assume that this is the case.

Fix any x 6= 1 and then fix any y in G \ 〈x〉. Both x and y have order p. We have
〈x〉 ( 〈x, y〉 ≤ G (with the first inclusion strict by the choice of y) so |〈x, y〉| divides p2 and
is greater than |〈x〉| = p. Thus |〈x, y〉| = p2 and G = 〈x, y〉.

The group 〈x〉 × 〈y〉 has isomorphism class Cp × Cp because both x and y have order p.
It is therefore enought to verify that the function

f : 〈x〉 × 〈y〉 → 〈x, y〉 = G

given by f((xa, yb)) := xayb is an isomorphism (for 0 ≤ a, b ≤ p − 1). Since we already
know that G is abelian, we get

f((xa, yb)(xc, yd)) = f((xa+c, yb+d)) = xa+cyb+d

= xa(xcyb)yd = xaybxcyd = f((xa, yb))f((xc, yd)),

so f is a homomorphism.
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Now f is surjective, by Proposition 2.19 combined with the fact that G is abelian. But
a surjective function between two sets of cardinality p2 must necessarily be bijective, so f
is an isomorphism, as required. �

4.2.5. Conjugacy classes in Sn.

Lemma 4.67. Let σ and τ be lements of Sn and let

(a1
1, a

1
2, . . . , a

1
k1)(a2

1, a
2
2, . . . , a

2
k2) . . . (ar1, a

r
2, . . . , a

r
kr)

be the cycle decomposition of σ. Then τστ−1 has cycle decomposition

(τ(a1
1), τ(a1

2), . . . , τ(a1
k1))(τ(a2

1), τ(a2
2), . . . , τ(a2

k2)) . . . (τ(ar1), τ(ar2), . . . , τ(arkr)).

Proof. Given 1 ≤ i, j ≤ n we have σ(i) = j if and only if

(τστ−1)(τ(i)) = τ(σ(i)) = τ(j).

Thus the ordered pair i, j appears in the cycle dcomposition of σ if and only if the ordered
pair τ(i), τ(j) appears in the cycle decomposition of τστ−1. This completes the proof. �

Example 4.68. If in S9 we have σ = (1, 2)(3, 4, 5)(6, 7, 8, 9) and τ = (1, 3, 5, 7)(2, 4, 6, 8)
then

τστ−1 = (3, 4)(5, 6, 7)(8, 1, 2, 9).

Definition 4.69.
(i) If σ ∈ Sn is the product of disjoint cycles of lengths k1, k2, . . . , kr with k1 ≤ k2 ≤ . . . ≤ kr,
including the 1-cycles, then the sequence k1, k2, . . . , kr is called the ‘cycle type’ of σ.
(ii) Given a natural number n, a ‘partition of n’ is any non-decreasing sequence of natural
numbers whose sum is equal to n.

Remark 4.70. By definition the cycle type of an element of Sn is a partition of n.

Examples 4.71.
(i) The cycle type of an m-cycle in Sn is 1, 1, . . . , 1,m, where 1 occurs n −m times in the
sequence.
(ii) The cycle type of τ = (1, 3, 5, 7)(2, 4, 6, 8) ∈ S9 is 1, 4, 4.

Proposition 4.72. Two elements of Sn are conjugate if and only if they have the same
cycle type. The number of conjugacy classes in Sn equals the number of partitions of n.

Proof. From Lemma 4.67 it is clear that conjugate premutations have the same cycle type.
Conversely, if

σ = (a1
1, a

1
2, . . . , a

1
k1)(a2

1, a
2
2, . . . , a

2
k2) . . . (ar1, a

r
2, . . . , a

r
kr)

and

σ′ = (b11, b
1
2, . . . , b

1
k1)(b21, b

2
2, . . . , b

2
k2) . . . (br1, b

r
2, . . . , b

r
kr)

both have cycle type k1, k2, . . . , kr then the map τ(aji ) := bji defines a permutation τ in Sn,
and Lemma 4.67 implies that σ′ = τστ−1.

The second claim follows immediately from the first, as certainly any partiton of n may
be achieved as the cycle type of a permutation of Sn. �
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Examples 4.73.
(i) If in S9 we have

σ = (2, 4, 7, 6)(3, 5)(8, 9) = (1)(3, 5)(8, 9)(2, 4, 7, 6)

and

σ′ = (1, 8)(2, 6, 9, 5)(4, 7) = (3)(1, 8)(4, 7)(2, 6, 9, 5)

then σ′ = τ1στ
−1
1 for τ1 = (1, 3)(4, 6, 5, 8)(7, 9).

Please note that we may also write σ′ in alternative ways, for instance

σ′ = (3)(4, 7)(8, 1)(5, 2, 6, 9) = (3)(8, 1)(4, 7)(5, 2, 6, 9).

Thus we also have σ′ = τ2στ
−1
2 and σ′ = τ3στ3 for τ2 = (1, 3, 4, 2, 5, 7, 6, 9) and τ3 =

(1, 3, 8, 4, 2, 5)(6, 9, 7).
(ii) For n = 5, the partitions of 5 are

{1, 1, 1, 1, 1}, {1, 1, 1, 2}, {1, 1, 3}, {1, 4}, {5}, {1, 2, 2}, {2, 3}.

A set of representatives of all the conjugacy classes of S5 is therefore given by

1, (1, 2), (1, 2, 3), (1, 2, 3, 4), (1, 2, 3, 4, 5), (1, 2)(3, 4), (1, 2)(3, 4, 5).

Exercise 4.74. Fix an m-cycle σ in Sn, with m ≤ n. Write Hσ for the subgroup of Sn
which fixes all of the m integers that occur in the cycle σ.

(i) Determine the number of conjugates of σ.
(ii) Determine the order of CSn(σ).
(iii) Prove that CSn(σ) = {σiτ : 0 ≤ i ≤ m− 1, τ ∈ Hσ}.

We will now apply some of the above results to prove that A5 is a simple group. This
will be our main example of a non-abelian simple group. Before proceeding we need a final
general result that will be used in the proof.

Lemma 4.75. Let G be a group. If H is a normal subgroup of G and K is a conjugacy
class of G then either K ⊆ H or K ∩H = ∅. In particular, every normal subgroup of G is
a union of conjugacy classes.

Proof. If x belongs to K ∩H then every conjugate gxg−1 of x belongs to gHg−1, for every
g ∈ G. Since H is normal, every conjugate of x belongs to G, meaning that the conjugacy
class K of x is contained in H. �

Theorem 4.76. A5 is a simple group.

Proof. We recall that |A5| = 60. We claim that A5 has five conjugacy classes, of cardinalities
1, 15, 20, 12 and 12. We note that two elements of A5 that have different cycle type are not
conjugate in S5, and therefore cannot be conjugate in A5 either.

There are twenty 3-cycles in S5, and all of them obviously belong to A5. We claim that
they are all conjugate in A5. By Exercise 4.74(iii) we have

CS5((1, 2, 3)) = {(1, 2, 3)iτ : i ∈ {0, 1, 2}, τ ∈ {1, (4, 5)}}
= {1, (1, 2, 3), (1, 3, 2), (4, 5), (1, 2, 3)(4, 5), (1, 3, 2)(4, 5)}
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and therefore

CA5((1, 2, 3)) = {1, (1, 2, 3), (1, 3, 2)}.
By Proposition 4.61, the conjugacy class of (1, 2, 3) in A5 has cardinality 60/3 = 20, so all
twenty 3-cycles are conjugate in A5.

There are twenty-four 5-cycles in S5, and all of them obviously belong to A5. We
claim that they comprise two different conjugacy classes in A5, both of them of cardi-
nality 12. By Exercise 4.74(iii) we have CS5((1, 2, 3, 4, 5)) = 〈(1, 2, 3, 4, 5)〉 and therefore
CA5((1, 2, 3, 4, 5)) = 〈(1, 2, 3, 4, 5)〉 has order 5. By Proposition 4.61, the conjugacy class of
(1, 2, 3, 4, 5) in A5 has cardinality 60/5 = 12.

There is therefore some 5-cycle σ that is not conjugate to (1, 2, 3, 4, 5) in A5 (in fact, the
method of proof of Proposition 4.72 shows that any element of S5 conjugating (1, 2, 3, 4, 5)
into (1, 3, 5, 2, 4) must be an odd permutation, and therefore that these two 5-cycles cannot
be conjugate in A5, so one may take σ = (1, 3, 5, 2, 4)). By exactly the same argument as
above we get CS5(σ) = 〈σ〉 and CA5(σ) = 〈σ〉 and so the conjugacy class of σ in A5 has
cardinality 60/5 = 12. We conclude that the twenty-four 5-cycles comprise two different
conjugacy classes in A5, both of them of cardinality 12, as claimed.

There are fifteen remaining non-trivial elements of A5. We easily find that these must be

(1, 2)(3, 4), (1, 2)(3, 5), (1, 2)(4, 5), (1, 3)(2, 4), (1, 3)(2, 5), (1, 3)(4, 5),

(1, 4)(2, 3), (1, 4)(2, 5), (1, 4)(3, 5), (1, 5)(2, 3), (1, 5)(2, 4), (1, 5)(3, 4),

(2, 3)(4, 5), (2, 4)(3, 5), (2, 5)(3, 4),(26)

so they all have cycle type 2, 2. We claim that they are all conjugate in A5.
By Exercise 4.77 below we know that CA5((1, 2)(3, 4)) has order 4 so indeed, by Proposi-

tion 4.61, the conjugacy class of (1, 2)(3, 4) in A5 has cardinality 60/4 = 15, so all remaining
non-trivial elements are conjugate in A5.

Having computed the cardinalities of all conjugacy classes in A5, let H be a normal
subgroup of G. Then on the one hand the order of H is a divisor of 60 by Lagrange’s
Theorem, so it must be one of

1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60.

On the other hand by Lemma 4.75 we know that H must be a union of conjugacy classes,
including the conjugacy class {1}, so the possibilities for its order are

1, 13, 16, 21, 25, 28, 33, 36, 40, 45, 48, 60.

The only numbers occurring in both lists are 1 and 60 so either H = {1} or H = A5. This
proves that A5 is simple. �

Exercise 4.77. Verify that no 5-cycle can belong to CA5((1, 2)(3, 4)), that no 3-cycle can
belong to CA5((1, 2)(3, 4)), and finally use the list (26) to verify that

CA5((1, 2)(3, 4)) = {1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

Remark 4.78. In fact An si simple for all n ≥ 5. See [2, §4.6] for a proof of this fact.

4.3. Sylow’s Theorem.
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82 DANIEL MACÍAS CASTILLO

4.3.1. The result. In this section we prove a partial converse to Lagrange’s Theorem 2.61
that is a very important result of group theory in its own right.

Definition 4.79. Let p be a prime number

(i) A group of order pα, for a natural number α, is called a ‘p-group’. A ‘p-subgroup’
of a group is a subgroup of said group that is also a p-group.

(ii) If G is a finite group of order pαm for α ≥ 0,m ≥ 1 and with p - m, then any
subgroup of G of order pα is called a ‘Sylow p-subgroup’ of G.

(iii) Let G be a finite group. The set of Sylow p-subgroups of G will be denoted by
Sylp(G) and the number of Sylow p-subgroups of G will be denoted by np(G), or
just by np when G is clear from context.

Clearly any conjugate of a Sylow p-subgroup of G is also a Sylow p-subgroup (see Exercise
3.18).

We may now state Sylow’s Theorem.

Theorem 4.80. Let G be a finite group. Then:

(i) G has Sylow p-subgroups.
(ii) If P is a Sylow p-subgroup of G and Q is any p-subgroup of G then

Q ⊆ gPg−1

for some g ∈ G. In particular, any two Sylow p-subgroups of G are conjugate in G.
(iii) We have

np(G) ≡ 1 (mod p)

and also

(27) np(G) = [G : NG(P )]

for any Sylow p-subgroup P of G.

Remark 4.81. Let G be a group of order pαm with p - m. Let P be a Sylow p-subgroup
of G. Since P ≤ NG(P ), the equality (27) implies that np(G) divides m.

Before proving Sylow’s Theorem we require the following auxiliary lemma.

Lemma 4.82. Let P be a Sylow p-subgroup of G and let Q be any p-subgroup of p. Then
Q ∩NG(P ) = Q ∩ P .

Proof. We set H := Q∩NG(P ). Since P ⊆ NG(P ) it is clear that Q∩P ⊆ H, and we must
prove the reverse inclusion. It is clearly enough to prove that H ⊆ P .

To prove that H ⊆ P we will simply prove that PH is a p-subgroup of G. If we can do
this, we would have P ⊆ PH with P a p-subgroup of G of the largest possible order, and
thus we would have P = PH. But if P = PH then H ⊆ P , as required.

Since H is contained in NG(P ), we know from Corollary 3.53 that PH is a subgroup of
G. By Proposition 3.49 we also have

|PH| = |P ||H|
|P ∩H|

.
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Recalling that H is a subgroup of the p-group Q, we see that all the factors in the right-hand
side of the above expression are powers of p. We conclude that PH is indeed a p-subgroup
of G, as required to complete the proof. �

We finally provide the proof of Sylow’s Theorem 4.80.

Proof. Write |G| = pαm with α ≥ 0,m ≥ 1 and p - m.
We first prove claim (i) of Theorem 4.80 by induction on |G|. If |G| = 1 then there is

nothing to prove. We now assume any group of order less than pαm has Sylow p-subgroups.
We first assume that p divides |Z(G)|. By Cauchy’s Theorem 3.64 for abelian groups, the

abelian group Z(G) has a subgroup N that has order p. Since N is contained in Z(G) it is
also normal in G. Then G := G/N has order pα−1m < pαm. By the inductive hypothesis,
G has a subgroup L of order pα−1.

By the Fourth Isomorphism Theorem 3.60, there is a subgroup P of G that contains N
and has the property that P/N = L. But then |P | = |P/N | · |N | = pα−1 · p = pα. Thus P
is a Sylow p-subgroup of G.

We now assume that p does not divide |Z(G)|. If α = 0 then the result is trivial, so we
assume α ≥ 1. Let g1, . . . , gr be a set of representatives of the distinct conjugacy classes of
G\Z(G). By the Class Equation (25), if p divides each [G : CG(gi)] for each i then p would
divide |Z(G)|. Hence for some j we have that p does not divide [G : CG(gj)]. We fix such
a j.

Since p does not divide [G : CG(gj)] and

pαm = |CG(gj)|[G : CG(gj)]

we must have |CG(gj)| = pαk for some k (with p - k). Since gj /∈ Z(G) we know that CG(gj)
must be a proper subgroup of G, so also |CG(gj)| < |G|. By the inductive hypothesis CG(gj)
has a subgroup P of order pα, which is of course also a subgroup of G. This completes the
proof of claim (i).

In order to prove claims (ii) and (iii) we first use claim (i) to fix a Sylow p-subgroup P
of G. We write

S(P ) := {gPg−1 : g ∈ G}
for the set of conjugates of P . By Exercise 3.18, each element P ′ of S(P ) is a Sylow p-
subgroup of G. By definition G acts on S(P ) by conjugation. Of course, any subgroup of
G also acts on S(P ) by conjugation.

Let Q be any subgroup of G. By Proposition 4.45 the orbits OQP ′ , as P ′ ranges through
S(P ), of the action of Q on S(P ) form a partition of S(P ). We may thus fix such orbits

OQP1
, . . . ,OQPsQ with the property that S(P ) is the disjoint union

S(P ) = OQP1
∪ . . . ∪ OQPsQ ,

so that

(28) |S(P )| =
i=sQ∑
i=1

|OQPi |.

We always choose and order such orbits so that P1 = P .
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84 DANIEL MACÍAS CASTILLO

We claim that for any p-subgroup Q of G, any choice P1, . . . , PsQ as above and any
1 ≤ i ≤ sQ one has

(29) |OQPi | = [Q : (Pi ∩Q)].

Indeed, by Proposition 4.45 we have |OQPi | = [Q : QPi ] where QPi is the stabiliser of Pi
in Q, which is equal to NQ(Pi). Clearly NQ(Pi) = Q ∩ NG(Pi) and, by Lemma 4.82,
Q ∩NG(Pi) = Q ∩ Pi. These facts together combine to prove (29).

We next claim that

(30) |S(P )| ≡ 1 (mod p).

We prove this fact by applying (28) and (29) to the p-subgroup Q = P of G. For P1 = P
we get |OPP | = 1. For all 2 ≤ i ≤ sP we have Pi 6= P so Pi ∩ P is stricly contained in P .
From (29) we get that

|OPPi | = [P : (Pi ∩ P )]

is greater than 1. It is also a power of p, since P is a p-group. Therefore p divides |OPPi | for
every 2 ≤ i ≤ sP and (28) implies that

|S(P )| ≡ 1 +

i=sP∑
i=2

0 = 1 (mod p),

as required to prove (30).
We finally proceed to prove claims (ii) and (iii) of Theorem 4.80. Let Q be any p-subgroup

of G. We prove that Q must be contained in some conjugate of P by applying (28) and
(29) to the p-subgroup Q. We argue by contradiction.

Suppose that Q is not contained in any conjugate of P . Then Pi ∩ Q would be strictly
contained in Q for every 1 ≤ i ≤ sQ. From (29) we would get that

|OQPi | = [Q : (Pi ∩Q)]

is greater than 1. It is also a power of p, since Q is a p-group. Therefore p would divide |OQPi |
for every 1 ≤ i ≤ sQ, and (28) would then imply that |S(P )| is divisible by p, contradicting
(30). We have proved that Q must be contained in some conjugate of P .

The final statement in claim (ii) now follows immediately, since any conjugate of P also
has order pα by Exercise 3.18.

To prove claim (iii) we first note that claim (ii) implies that Sylp(G) = S(P ). In particular

np(G) = |S(P )| ≡ 1 (mod p)

by (30), as required.
We finally note that

np(G) = |S(P )| = |OGP | = [G : GP ] = [G : NG(P )],

where the third equality is by Proposition 4.45, with GP the stabiliser of P under the
conjugation action of G, which is just NG(P ). �

Remark 4.83. Note that Theorem 4.80 combines with Exercise 3.18 to imply that, for a
given prime p and finite group G, any two Sylow p-subgroups of G are isomorphic.
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Corollary 4.84. Let G be a finite group and let p be a prime. Let P be a sylow p-subgroup
of G. Then the following conditions are equivalent.

(i) P is the unique Sylow p-subgroup of G (so np(G) = 1).
(ii) P is normal in G.

(iii) For any set S of elements of G of p-power order, the subgroup 〈S〉 of G is a p-
subgroup.

Proof. Condition (i) is equivalent to condition (ii) because a subgroup P is normal in G if
and only if it is equal to all of its conjugates (so the required equivalency then follows from
Sylow’s Theorem 4.80).

We now show that conditions (i) and (ii) imply condition (iii). Assume that P is the
unique Sylow p-subgroup of G (and is normal) and fix a set S as in condition (iii). For
each x ∈ S the cyclic subgroup 〈x〉 of G is a p-subgroup and thus Sylow’s Theorem 4.80
(ii) (with Q = 〈x〉) implies that there is g ∈ G for which x belongs to gPg−1. But we know
that gPg−1 = P . This argument proves that S ⊆ P which implies that 〈S〉 ⊆ P , which
implies that 〈S〉 is a p-subgroup of G.

Conversely, assume that condition (iii) holds. We will prove that condition (i) must also
hold. Let S be the union of all Sylow p-subgroups of G. If there were any other Sylow
p-subgroup of G other than P , then S would not be contained in P : indeed, all Sylow
p-subgroups have the same order so they cannot be included in each other, and there would
be some element of S not in P . It is thus enough to show that S ⊆ P .

But P is a subgroup of 〈S〉, where 〈S〉 is a p-subgroup of G by condition (iii), and P has
maximal order. We therefore get P = 〈S〉 or equivalently, S ⊆ P , as required. �

Examples 4.85. (i) If p does not divide the order of G, then the (unique) Sylow p-subgroup
of G is the trivial subgroup and Sylow’s Theorem becomes trivial for G and p.
(ii) If G is a p-group then the (unique) Sylow p-subgroup of G is G and Sylow’s Theorem
is also trivial for G and p.
(iii) The group S3 has three Sylow 2-subgroups:

{1, (1, 2)}, {1, (1, 3)}, {1, (2, 3)}.

Note that 3 ≡ 1 (mod 2). However the group S3 has a unique Sylow 3-subgroup A3 =
{1, (1, 2, 3), (1, 3, 2)}, which of course is normal in S3.
(iv) The group A4 has a unique Sylow 2-subgroup

{1, (1, 2)(3, 4), (1, 3)(2, 4), (1, 4)(2, 3)}.

It has, however, four Sylow 4-subgroups

{1, (1, 2, 3), (1, 3, 2)}, {1, (1, 2, 4), (1, 4, 2)}, {1, (1, 3, 4), (1, 4, 3)}, {1, (2, 3, 4), (2, 4, 3)}.

Note that 4 ≡ 1 (mod 3).
(v) The group S4 has n2(S4) = 3 and n3(S4) = 4.

Exercise 4.86. Find all Sylow 2-subgroups and all Sylow 3-subgroups of S4.

Exercise 4.87. Let A be a finite abelian group. For each prime p set

Ap := {a ∈ A : o(a) = pk, k ≥ 0}.
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Prove that Ap is a subgroup of A and moreover, prove that Ap is the unique Sylow p-
subgroup of A.

4.3.2. Some applications of Sylow’s Theorem. We already discussed Cauchy’s Theorem in
Remarks 2.70(ii) and we then proved it for abelian groups in Theorem 3.64. Sylow’s Theo-
rem now puts us in a position to prove the general case:

Theorem 4.88. Let G be a finite group and let p be a prime number dividing |G|. Then G
has an element of order p.

Exercise 4.89. Use Sylow’s Theorem 4.80 and Cauchy’s Theorem for abelian groups 3.64
to prove Cauchy’s Theorem 4.88.

Remark 4.90. Note that we never used the general version of Cauchy’s Theorem when
proving Sylow’s Theorem, but only the version for abelian groups, so our line of reasoning
is not circular.

Example 4.91. Let G be a group of order pq, for distinct prime numbers p and q. Without
loss of generality we assume that p < q. We fix P in Sylp(G) and Q in Sylq(G). We will
prove the following claims:

(i) Q is normal in G.
(ii) If p - q − 1 then P is normal in G.

(iii) If P is normal in G then G is cyclic.

Claim (i) holds because nq = 1 + kq for some k ≥ 0 by Theorem 4.80(iii) while also nq
divides p by Remark 4.81. Since p < q we must have nq = 1, so Q is normal in G by
Corollary 4.84.

Similarly np divides q by Remark 4.81, so we always have np ∈ {1, q}, with P normal in
G if and only if np = 1 (see Corollary 4.84). Since np = 1 + pl for some l ≥ 0, in the setting
of claim (ii) we cannot have np = q. This proves claim (ii).

We now prove claim (iii). Assume that P is normal in G, so NG(P ) = G. Both P and Q
are cyclic groups (as they have prime order). Let P = 〈x〉 and Q = 〈y〉.

We write Aut(P ) for the set of automorphisms of P , meaning isomorphisms with P
as both the domain and the codomain. Then Aut(P ) is a group under composition (see
Exercise 1.107).

We have a well-defined injective homomorphism

f : G/CG(P ) = NG(P )/CG(P )→ Aut(P )

given by

(f(gCG(P ))) (π) := gπg−1

for g ∈ G = NG(P ) and π ∈ P . See [2, §4.4, p. 133,134] for a more general statement. Now
by [2, Prop. 16, §4.4, p. 135], Aut(P ) is a group of order p − 1. Since neither p nor q can
divide p− 1, we must have G = CG(P ).

Therefore y belongs to CG(P ) and hence x commutes with y. This implies that the
element xy has order pq. The subgroup 〈xy〉 of G then has order pq = |G| so it is equal to
G, meaning that G is cyclic, as required.
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Exercise 4.92.
(i) Find a Sylow 7-subgroup Q of S7.
(ii) Find a subgroup P of NS7(Q) of order 3.
(iii) Prove that PQ is a non-abelian group of order 21.

Remark 4.93. Let G be a group of order 30. If G has a subgroup of order 15 then it is
necessarily both normal (by Lemma 3.31) and cyclic, by Example 4.91.

In fact, one can apply Sylow’s Theorem to also prove that G does necessarily have a
subgroup of order 15. See [2, p. 143,144] for this argument.

Example 4.94. Let G be a group of order 12. We will show that either G has a normal
Sylow 3-subgroup or G ∼= A4.

Suppose n3 6= 1 and fix a Sylow 3-subgroup P of G. Since n3 | 4 and n3 ≡ 1 (mod )3,
we must have n3 = 4. Since distinct Sylow 3-subgroups intersect in the identity and each
contains two elements of order 3, G must contain 8 elements of order 3. Since [G : NG(P )] =
n3 = 4 we must have NG(P ) = P .

Now G acts by conjugation on its set of Sylow 3-subgroups, so this action affords a
permutation representation

ρ : G→ S4.

The kernel K of this action is the subgroup of G which normalises all Sylow 3-subgroups
of G. In particular K ⊆ NG(P ) = P . Since P is not normal in G by assumption we must
have K = 1, so

G ∼= im(ρ) ⊆ S4.

Since G contains 8 elements of order 3 and there are precisely 8 elements of order 3 in
S4, all of them contained in A4, the order of im(ρ)∩A4 is at least 8. Since both im(ρ) and
A4 have order 12 it follows that im(ρ) = A4, and thus G ∼= A4.

Example 4.95. Let G be a group of order p2q, for distinct primes p and q. We show that
G has either a normal Sylow p-subgroup or a normal Sylow q-subgroup. Fix p in Sylp(G)
and Q in Sylq(G).

Assume first that p > q. Since np | q and np ≡ 1 (mod p) we must have np = 1, so P is
normal in G.

Assume now that p < q. If nq = 1 then Q is normal in G. Otherwise nq = 1 + tq for
some t ∈ N. Now nq divides p2 but nq > q > p, so necessarily nq = p2. Thus

tq = p2 − 1 = (p− 1)(p+ 1).

Since q is prime it divides either p − 1 or p + 1. Since q > p the former is impossible and
the latter forces q = p+ 1, which can only happen for p = 2 and q = 3 and |G| = 12.

Since A4 has a normal Sylow 2-subgroup, the required conclusion now follows from Ex-
ample 4.94.

We saw in Theorem 4.76 that A5 is a simple group. We may now show that:

Proposition 4.96. If G is a simple group of order 60 then it is isomorphic to A5.

Proof. The number n2 must divide 15, so n2 ∈ {3, 5, 15}. Fix a Sylow 2-subgroup of G and
sey N := NG(P ), so tht [G : N ] = n2. Note for later use that n5 must be equal to 6.
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We first claim that G has no proper subgroup of index less than 5. If H had index 2, 3
or 4, then by Exercise 4.55, G would have a normal subgroup K contained in H for which
G/K is isomorphic to a subgroup of S2, S3 or S4. Since K 6= G, simplicity would force
K = {1}. This is impossible since 60 does not divide 4!.

The above claim implies in particular that n2 = [G : N ] 6= 3. We now assume that
n2 = [G : N ] = 5. In this case, again by Exercise 4.55, the action of G by left multiplication
on the set of left cosets of N in G gives a permutation representation of ρ : G→ S5. Since
the kernel of this action is a proper normal subgroup of G and G is simple, the representation
must be injective so G ∼= im(ρ) ≤ S5.

We aim to show that im(ρ) must be A5, thus giving an isomorphism G ∼= A5. If im(ρ)
were not contained in A5, then S5 = im(ρ)A5 and, by the Second Isomorphism Theorem
3.56, im(ρ)∩A5 is of index 2 in im(ρ). Since G, and therefore im(ρ), has no normal subgroup
of index 2, this is a contradiction.

Therefore we must have had im(ρ) ⊆ A5 and, by cardinality, also im(ρ) = A5, showing
that G ∼= A5 if n2 = 5.

We must finally show that one cannot have n2 = 15. We argue by contradiction. Assume
n2 = 15. If for every pair of Sylow 2-subgroups P and Q one had P ∩ Q = {1} then the
number of non-identity elements in Sylow 2-subgroups of G would be (4−1) ·15 = 45. Since
we know n5 = 6, the number of elements of order 5 in G must be (5−1) ·6 = 24, accounting
for 45 + 24 = 69 elements of G, a clear contradiction.

Thus there must be distinct Sylow 2-subgroups P and Q with |P ∩ Q| = 2. Set M :=
NG(P ∩Q). Since P and Q are abelian (being groups of order 4), P and Q are subgroups of
M and since G is simple, M 6= G. Thus 4 divides |M | and |M | > 4 (otherwise P = M = Q).
The only possibility is |M | = 12, so M has index 5 in G (recall that M cannot have index
1 or 3 in G). But now the argument of the preceding paragraph applied to M in place of
N gives G ∼= A5. This leads to a contradiction in this case because n2(A5) = 5. �

Remark 4.97. One may also show that any group of order 60 that has more than one
Sylow 5-subgroup is necessarily simple, hence isomorphic to A5.

Remark 4.98. You may now try to prove that if G is a non-abelian group simple group
with |G| < 100 then G ∼= A5, by eliminating all orders other than 60 as possibilities.

4.4. (More) Exercises. Don’t forget to think about the exercises given throughout the
rest of section 4.

Exercise 4.99. Recall from Exercise 1.107 that any group G has associated a group of
automorphisms Aut(G). Prove that Aut(Z/nZ) is isomorphic to (Z/nZ)× (or see [2, Prop.
4.16, p. 135] for a proof, or use the strategy of Exercise 2.101).

Exercise 4.100. Write each of the permutations considered in Exercises 1.86 and 1.87 as
a product of transpositions, and determine their signs.

Exercise 4.101. Prove that the square of every permutation is even.

Exercise 4.102. Prove that Sn = 〈U〉 for U := {(i, i+ 1) : 1 ≤ i ≤ n− 1}.

Exercise 4.103. Prove that Sn = 〈(1, 2), (1, 2, 3, . . . , n)〉.
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Exercise 4.104. Let p be a prime. Let σ ∈ Sp be a transposition and let τ ∈ Sp be a
p-cycle. Prove that Sp = 〈σ, τ〉.

Exercise 4.105. Show that 〈(1, 3), (1, 2, 3, 4)〉 is a proper subgroup of S4.

Exercise 4.106.
(i) Find all subgroups of A4 that have order 2.
(ii) Find all subgroups of A4 that have order 4. Determine which of them are normal in A4

and what their isomorphism class is.
(iii) Prove that A4 is solvable.

Exercise 4.107. Find all elements of order 4 in S4. Prove that S4 contains no subgroup
that is isomorphic to Q8.

Exercise 4.108. Prove that the function f : Sn−2 → An given by f(σ) = σ if σ is even,
and by f(σ) = σ ◦ (n+ 1, n+ 2) if σ is odd, is an injective homomorphism. Find generators
of im(f).

Exercise 4.109. Prove that every element of order 2 in An is the square of an element of
order 4 of Sn.

Exercise 4.110. Let σ ∈ A4 have order 2 and let τ ∈ A4 have order 3. Prove that
〈σ, τ〉 = A4.

Exercise 4.111. Let σ and τ be 3-cycles in S4 with σ 6= τ and σ 6= τ−1. Prove that
〈σ, τ〉 = A4.

Exercise 4.112.
(i) Find 3-cycles σ and τ in S5 with σ 6= τ , σ 6= τ−1 and 〈σ, τ〉 ∼= A4.
(ii) Find 3-cycles σ and τ in S5 with σ 6= τ , σ 6= τ−1 and 〈σ, τ〉 = A5.

Exercise 4.113. Let G act on A. Prove that if a, b ∈ A with a = gb for some g ∈ G
then Gb = gGag

−1. Deduce that if G acts transitively on A then the kernel of the action is⋂
g∈G gGag

−1, for any given a ∈ A.

Exercise 4.114. Let A be a non-empty set and let G be a subgroup of SA, acting on A via
evaluation. Fix σ ∈ G and a ∈ A. Prove that σGaσ

−1 = Gσ(a). Deduce that if the action
of G on A is transitive then ⋂

σ∈G
σGaσ

−1 = {1}.

Exercise 4.115. Let A be a set and letG be an abelian subgroup of SA that acts transitively
on A via evaluation. Show that σ(a) 6= a for every σ ∈ G \ {1} and every a ∈ A. Deduce
that the order of G must be equal to the cardinality of A.

Exercise 4.116. Let S3 act on {1, 2, 3} × {1, 2, 3} via

σ((i, j)) := (σ(i), σ(j)).

Find all the orbits and all the stabilisers associated to this action.
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Exercise 4.117. Fix a different bijection between G = Z/2Z× Z/2Z and {1, 2, 3, 4} than
the one used on Example 4.51. Show that, although the homomorphism G→ S4 that you
obtain from the (left) regular representation is different from the one described there, its
image in S4 is the same subgroup.

Exercise 4.118. Use the (left) regular representation of Q8 to find two elements of x and
y of S8 with the property that the subgroup 〈x, y〉 of S8 is isomorphic to Q8.

Exercise 4.119. (i) Show that if Q8 acts on a set A of cardinality less than or equal to 7
then the stabiliser of each element of A is non-trivial.
(ii) Show that if Q8 acts on a set A of cardinality less than or equal to 7 then the kernel of
the action must contain the subgroup 〈−1〉 of Q8.
(iii) Show that Q8 cannot be isomorphic to a subgroup of Sn for any n ≤ 7.

Exercise 4.120. Let G be a finite group and let ρ : G → S|G| be the (left) regular
representation of G. Fix an element x of G and set n := o(x) and m := |G|/n. Prove that
ρ(x) is a product of m n-cycles. Deduce that ρ(x) is an odd permutation if and only if o(x)
is even and |G|/o(x) is odd.

Exercise 4.121. Let G be a finite group and let ρ : G → S|G| be the (left) regular
representation of G. Use Exercise 3.115 to prove that if im(ρ) contains an odd permutation
then G has a subgroup of index 2.

Exercise 4.122. Use Cauchy’s Theorem (for general finite groups) and the previous two
exercises to show that if G is a finite group for which 2 divides |G| but 4 does not divide
|G|, then G has a subgroup of index 2.

Exercise 4.123. Let G be a finite group. Assume that |G| is not prime and that, for every
natural number k dividing |G|, G has a subgroup of order k. Prove that G is not simple.

Exercise 4.124. Find all conjugacy classes, and their cardinalities, in each of the groups

D8, D10, Q8, A4, Z/2Z× S3, S3 × S3, Z/3Z×A4.

Exercise 4.125. Show that for any element g and subset S of a groupG one has gNG(S)g−1 =
NG(gSg−1) and gCG(S)g−1 = CG(gSg−1).

Exercise 4.126. Prove that every conjugacy class in a group G has cardinality less than
or equal to [G : Z(G)].

Exercise 4.127. Let G be a non-abelian group of order 15. Use Exercise 3.102 to prove
that Z(G) = 1. Prove also that the Class Equation of G must be 15 = 1 + 3 + 3 + 3 + 5.

Exercise 4.128. For n = 3, 4, 6, 7, make lists of all the partitions of n and give represen-
tatives of the corresponding conjugacy classes of Sn.

Exercise 4.129. Prove that Z(Sn) = 1 for all n ≥ 3.

Exercise 4.130. Set σ := (1, 2, 3, 4, 5) ∈ S5. In each of the following, find an element τ of
S5 which stisfies the given equality.

(i) τστ−1 = σ2.
(ii) τστ−1 = σ−1.
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(iii) τστ−1 = σ−2.

Exercise 4.131. In each of the following, determine whether σ and σ′ are conjugate or
not. If they are, find an element τ for which σ′ = τστ−1.

(i) σ = (1, 2)(3, 4, 5) and σ′ = (1, 2, 3)(4, 5) in S5.
(ii) σ = (1, 5)(2, 3, 7)(6, 8, 11, 10) and σ′ = (2, 13, 11)(3, 7, 5, 10)(4, 9) in S13.

(iii) σ = (1, 5)(2, 3, 7)(6, 8, 11, 10) and σ′ = σ3 in S13.
(iv) σ = (1, 3)(2, 4, 6) and σ′ = (2, 4)(3, 5, 6) in S6.

Exercise 4.132. Find a representative of each conjugacy class of elements of order 4 in S8,
and also in S12.

Exercise 4.133. Find all finite groups which have exactly two conjugacy classes.

Exercise 4.134. Let p be a prime and let G be a group of order pn for some natural number
n. Prove (by induction on n) that G has a subgroup of order pm for every 0 ≤ m ≤ n.

Exercise 4.135. Let G be a group of odd order. Let g 6= 1 be an element of G. Prove that
g and g−1 are not conjugate in G.

Exercise 4.136. Let σ be an element of Sn. Let m1,m2, . . . ,ms be the distinct integers
which occur in the cycle type of σ. For each i = 1, . . . , s, assume that σ has qi cycles of
length mi. Prove that the number of conjugates of σ is

n!

(q1!mq1
1 )(q2!mq2

2 ) . . . (qs!m
qs
s )
.

Exercise 4.137. Let p be a prime. Let P be a subgroup of Sp that has order p. Show
that every subgroup of Sp conjugate to P contains exactly p − 1 p-cycles. Deduce that
|NSp(P )| = p(p− 1).

Exercise 4.138. Let p be a prime. Find a formula for the number of conjugacy classes of
elements of order p in Sn.

In the remaining exercises we let G denote a finite group and we let p denote a prime
number.

Exercise 4.139. Fix P ∈ Sylp(G) and let H be a subgroup of G containing P . Show that
P belongs to Sylp(H). Give an example of group G, subgroup H and element Q of Sylp(H)
that is not in Sylp(G).

Exercise 4.140. For H ≤ G and Q ∈ Sylp(H), show that gQg−1 belongs to Sylp(gHg
−1)

for any g ∈ G.

Exercise 4.141. Find all Sylow 2-subgroups and all Sylow 3-subgroups of D12 and of
S3 × S3.

Exercise 4.142. Show that if p is odd then every Sylow p-subgroup of D2n is both normal
in D2n and cyclic.

Exercise 4.143. Find the Sylow 3-subgroups of A4 and of S4.

Exercise 4.144. Prove that if n is odd then n2(D2n) = n.
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Exercise 4.145. Prove that a group of order 56 must have a normal Sylow p-subgroup for
some prime p | 56.

Exercise 4.146. Prove that a group of order 312 must have a normal Sylow p-subgroup
for some prime p | 312.

Exercise 4.147. Prove that a group of order 351 must have a normal Sylow p-subgroup
for some prime p | 351.

Exercise 4.148. Show that if |G| is the product of three distinct primes, then it has a
normal Sylow subgroup for one of the three primes.

Exercise 4.149. Prove that a group of order 200 must have a normal Sylow 5-subgroup.

Exercise 4.150. Prove that there is no simple group of order 6545.

Exercise 4.151. Prove that there is no simple group of order 1365.

Exercise 4.152. Prove that there is no simple group of order 2907.

Exercise 4.153. Prove that there is no simple group of order 132.

Exercise 4.154. Prove that there is no simple group of order 462.

Exercise 4.155. Let P be a normal Sylow p-subgroup of G and let H ≤ G. Show that
P ∩H is a normal Sylow p-subgroup of H.

Exercise 4.156. Let P be a Sylow p-subgroup of G and let N be a normal subgroup of
G. Show that P ∩N is a Sylow p-subgroup of N and that PN/N is a Sylow p-subgroup of
G/N .

Exercise 4.157. Let P be a Sylow p-subgroup of G and let H ≤ G. Prove that gPg−1∩H
is a Sylow p-subgroup of H for some g ∈ G. Give an explicit example in which hPh−1 ∩H
is not a Sylow p-subgroup for any h ∈ H.

Exercise 4.158. Prove that if N is a normal subgroup of G then np(G/N) ≤ np(G).

Exercise 4.159. Let R be a normal p-subgroup of G (not necessarily of maximal order).

(i) Prove that R is contained in every Sylow p-subgroup of G.
(ii) If S is also a normal p-subgroup of G, prove that RS is also a normal p-subgroup

of G.
(iii) Set

Op(G) := 〈
⋃
Q

Q〉

where Q runs over all normal p-subgroups of G. Prove that Op(G) is the unique
largest normal p-subgroup of G and also that

Op(G) =
⋂
P

P

where P runs over all Sylow p-subgroups of G.
(iv) Set G := G/Op(G). Prove that Op(G) = {Op(G)}, that is, G has no non-trivial

normal p-subgroup.
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Exercise 4.160. Use the same method we used in the proof of Sylow’s Theorem to show
that, if np is not congruent to 1 modulo p2, then there are distinct Sylow p-subgroups P
and Q of G for which [P : P ∩Q] = [Q : P ∩Q] = p.

Exercise 4.161. Assume that p is odd. Find generators for a Sylow p-subgroup of S2p.
Show that this is an abelian group of order p2.

Exercise 4.162. Assume that p is odd. Find generators for a Sylow p-subgroup of Sp2 .

Show that this is a non-abelian group of order pp+1.
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5. Classification and products

5.1. Products.

5.1.1. Direct products. In §1.1.5 we already defined the direct product of two groups and
discussed its basic properties.

Definition 5.1. For any finite collection of groups G1, . . . , Gn we define their direct product
to be the group

i=n∏
i=1

Gi = G1 × . . .×Gn,

defined through the binary operation

(g1, . . . , gn)(g′1, . . . , g
′
n) = (g1g

′
1, . . . , gng

′
n).

Exercise 5.2. Prove that
∏i=n
i=1 Gi is a group, and determine its identity element and the

inverse of each of its elements. Prove that it is abelian of and only if each group Gi is
abelian. Prove that

|
i=n∏
i=1

Gi| =
i=n∏
i=1

|Gi|,

and in particular that
∏i=n
i=1 Gi is finite if and only if each group Gi is finite.

Exercise 5.3. Let G1, . . . , Gn be groups and let σ be an element of Sn. Prove that the
function

fσ :

i=n∏
i=1

Gi →
i=n∏
i=1

Gσ(i)

given by

fσ((g1, . . . , gn)) := (gσ(1), . . . , gσ(n))

is an isomorphism.

Exercise 5.4. Let G1, . . . , Gn be groups. Prove that

G1 × (
i=n∏
i=2

Gi) ∼=
i=n∏
i=1

Gi ∼= (
i=n−1∏
i=1

Gi)×Gn.

Come up with additional similar relations in the case n = 4.

Lemma 5.5. Let G1, . . . , Gn be groups. Fix j with 1 ≤ j ≤ n.

(i) The subgroup

(31) {(1, 1, . . . , 1, gj , 1, . . . , 1) : gj ∈ Gj}

is normal in
∏i=n
i=1 Gi, and is also canonically isomorphic to Gj. By abuse of notation

we denote the subgroup (31) by Gj.
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(ii) In the notation of claim (i) we have a canonical isomorphism

(

i=n∏
i=1

Gi)/Gj ∼=
∏
i 6=j

Gi

(with i running over the integers from 1 to n that are different from j).
(iii) The surjective homomorphism

πj :
i=n∏
i=1

Gi → Gj

defined by
πj((g1, . . . , gn)) := gj

has
ker(πj) ∼=

∏
i 6=j

Gi.

(iv) In the notation of claim (i), if x belongs to the subgroup Gj of
∏i=n
i=1 Gi and y belongs

to the subgroup Gk of
∏i=n
i=1 Gi for some k 6= j, then xy = yx.

Proof. It is very easy to see that the subset (31) is a subgroup of
∏i=n
i=1 Gi. The map

gi 7→ (1, 1, . . . , 1, gj , 1, . . . , 1)

is also easily seen to give an isomorphism between Gi and the subgroup (31).
To prove both claims (i) and (ii) it is enough, by the First Isomorphism Theorem 3.44,

to show that there is a surjective homomorphism

µj :
i=n∏
i=1

Gi →
∏
i 6=j

Gi

with ker(µj) equal to the subgroup Gi of
∏i=n
i=1 Gi.

To do this we set

µj((g1, . . . , gn)) := (g1, . . . , gj−1, gj+1, . . . , gn).

This map is a homomorphism since

µj((g1, . . . , gn)(g′1, . . . , g
′
n)) =µj((g1g

′
1, . . . , gng

′
n))

=(g1g
′
1, . . . , gj−1g

′
j−1, gj+1g

′
j+1, . . . , gng

′
n)

=(g1, . . . , gj−1, gj+1, . . . , gn)(g′1, . . . , g
′
j−1, g

′
j+1, . . . , g

′
n)

=µj((g1, . . . , gn))µj((g
′
1, . . . , g

′
n)).

It is clear that the function µj is surjective, and also that ker(µj) is the subgroup (31)
(which we have identified with Gi), as required.

The proof of claim (iii) is given by an argument almost identical to the one given above,
and we leave it to the reader.

We finally prove claim (iv). Let

x = (1, . . . , 1, gj , 1, . . . , 1) ∈ Gj
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and let
y = (1, . . . , 1, gk, 1, . . . , 1) ∈ Gk.

Then
xy = (1, . . . , 1, gj , 1, . . . , 1, gk, 1, . . . , 1) = yx,

provided that j < k, or

xy = (1, . . . , 1, gk, 1, . . . , 1, gj , 1, . . . , 1) = yx,

provided that k < j. In either case, we get that x and y commute, as required. �

Notation 5.6. Given groups G1, . . . , Gn, an index j with 1 ≤ j ≤ n and an element gj of
Gj , we often denote the element

(1, . . . , 1, gj , 1, . . . , 1)

of
∏i=n
i=1 Gi simply by gj .

Remark 5.7. For each 1 ≤ i ≤ n fix an element gi of Gi. Then, using the notation
introduced in 5.6, Lemma 5.5 (iv) implies that

(32) (g1 · g2 · . . . · gn)k = gk1 · gk2 · . . . · gkn
in
∏i=n
i=1 Gi, for any k ∈ Z.

In particular
o(g1 · g2 · . . . · gn) = lcm(o(g1), o(g2), . . . , o(gn)),

where this order is infinite if and only if one the elements gi as infinite order.

Example 5.8. Let p be a prime and n be a natural number. Then

Epn := Z/pZ× Z/pZ× . . .Z/pZ
(with n factors in the right-hand side) is an abelian group of order pn, that moreover has
isomorphism class Cp × . . . Cp. This group is called the ‘elementary abelian group of order
pn’.

We compute the number of subgroups of Ep2 . Since each non-trivial element of Ep2 has
order p, each of these generates a cyclic subgroup of order p. By Lagrange’s Theorem, the
intersection of distinct subgroups of order p must be trivial. Thus the p2 − 1 non-identity
elements of Ep2 are partitioned into subsets of size p − 1 (each of these subsets comprises
the non-identity elements of some subgroup of order p). Therefore there must be

p2 − 1

p− 1
= p+ 1

subgroups of order p. There are hence p+ 3 subgroups of Ep2 .

Definition 5.9. We extend Definition 3.47. Given a group G and subgroups H1, . . . ,Hk of
G we define a subset

H1 . . . Hk := {h1 · . . . · hk : hi ∈ Hi}
of G.

Remark 5.10. It is easy to extend Corollary 3.53 and Corollary 3.54 by induction. In
particular, if each subgroup Hi is normal in G then H1 . . . Hn is a normal subgroup of G.
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Exercise 5.11. Let H and K be subgroups of a group G and assume that H ∩K = {1}.
Show that every element of HK has a unique expression as a product hk with h ∈ H and
k ∈ K.

Theorem 5.12. Let G be a group and let H1, . . . ,Hn be normal subgroups of G with the
property that

(33) Hj ∩ (H1 . . . Hj−1Hj+1 . . . Hn) = {1}
for each 1 ≤ j ≤ n. Then

(34) H1 . . . Hn
∼= H1 × . . .×Hn.

Proof. We observe that, for any k ≤ n, the subset H1 . . . Hk is a normal subgroup of G and
hence a group, by Remark 5.10.

We prove the result by induction on n. For n = 1 it is trivial. We assume that the result
holds for collections of n− 1 subgroups. We set H := H1 . . . Hn−1 and K := Hn.

For any 1 ≤ j ≤ n− 1 we have

H1 . . . Hj−1Hj+1 . . . Hn−1 ⊆ H1 . . . Hj−1Hj+1 . . . Hn−1Hn

and therefore also

(Hj ∩ (H1 . . . Hj−1Hj+1 . . . Hn−1)) ⊆ (Hj ∩ (H1 . . . Hj−1Hj+1 . . . Hn−1Hn)) = {1}.
By the inductive hypothesis we get

(35) H ∼= H1 × . . .×Hn−1.

If we can prove that

(36) HK ∼= H ×K,
then we would get

H1 . . . Hn−1Hn = HK ∼= H ×K ∼= (H1 × . . .×Hn−1)×Hn
∼= H1 × . . .×Hn−1 ×Hn,

with the isomorphisms by (36), (35) and Exercise 5.4 respectively.
We finally prove (36). We first note that both H and K are normal in G (by Remark

5.10) and also that the condition (33) with j = n states that

(37) H ∩K = {1}.
We first claim that for any h ∈ H and k ∈ K we have

(38) hk = kh.

Indeed, k−1hk belongs to H so h−1(k−1hk) belongs to H. Similarly, h−1k−1h belongs to K
so (h−1k−1h)k belongs to K. From (37) we get

h−1k−1hk = 1

or equivalently hk = kh, as claimed in (38).
By Exercise 5.11 combined with (37), every element of HK has a unique expression

as a product hk with h ∈ H and k ∈ K. This fact in turn means that the association
f(hk) := (h, k) gives a well-defined function

f : HK → H ×K.
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To conclude the proof of (36) and therefore of the theorem, we are hence reduced to
showing that f is an isomorphism. It is a homomorphism because

f((hk)(h′k′)) = f(h(kh′)k′) = f(h(h′k)k′) = f((hh′)(kk′)) = (hh′, kk′) = (h, k)(h′, k′) = f(hk)f(h′k′),

where the second equality follows from (38). Since f is clearly both injective and surjective,
this concludes the proof. �

Notation 5.13. Under the hypotheses of Theorem 5.12 we feel free to write
∏i=n
i=1 Hi for

either side of the isomorphism (34). The left-hand side of this isomorphism is sometimes
called the ‘internal direct product’ of H1, . . . ,Hn while the right-hand side is called the
‘external direct product’ of H1, . . . ,Hn. The notation introduced in 5.6 is consistent with
our identification of both direct products.

We immediately get the following special case of Theorem 5.12, which is sometimes
referred to as the ‘Recognition Theorem’.

Corollary 5.14. Let G be a group and let H and K be normal subgroups of G which satisfy
both

H ∩K = {1}
and

HK = G.

Then G is isomorphic to H ×K.

Examples 5.15.
(i) In G = Z/30Z we set

H1 := {0, 15}, H2 := {0, 10, 20}, H3 := {0, 6, 12, 18, 24}.
These are obviously normal subgroups of G which are cyclic, with isomorphism classes C2,
C3 and C5 respectively. In addition we have

H1 +H2 = {0, 5, 10, 15, 20, 25},
H1 +H3 = {0, 3, 6, 9, 12, 15, 18, 21, 24, 27},
H2 +H3 = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28},

H1 +H2 +H3 = G.

In particular

H1 ∩ (H2 +H3) = H2 ∩ (H1 +H3) = H3(H2 +H3) = {0}.
We get that

Z/30Z ∼= Z/2Z× Z/3Z× Z/5Z
or, in terms of isomorphism classes, that

C30 = C2 × C3 × C5.

(ii) If n is an odd natural number then one can use Corollary 5.14 to show that D4n
∼=

D2n × Z/2Z. Let H := 〈s4n, r
2
4n〉 and K := 〈rn4n〉 be subgroups of D4n = 〈s4n, r4n〉. Then

the map H → D2n = 〈s2n, r2n〉 that sends s4n to s2n and r2
4n to r2n is easily seen to be an

isomorphism, while K = {1, rn4n} is clearly isomorphic to Z/2Z.
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The subgroup H is normal in D4n as it can be shown to have index 2, while K can be seen
to be normal by direct computation. Also rn4n does not belong to H because n is assumed
to be odd, so H ∩K = {1}. The final condition to verify is that HK = D4n, and for this

it is enough to note that r4n = (r2
4n)(n+1)/2rn4n belongs to HK.

5.1.2. Semidirect products. Semidirect products of two groups H and K will be a generali-
sation of the direct product H×K which will still allow us to describe larger groups in terms
of their subgroups H and K. The key difference is that both H and K are normal in H×K,
and in practice this condition is often too restrictive when trying to study certain groups
through specific subgroups which may not be normal. We may even describe non-abelian
groups as semidirect products of abelian subgroups H and K.

Example 5.16. Let G be a group, let H be a normal subgroup of G and let K be any
subgroup of G for which H ∩ K = {1}. From Corollary 3.53 (and Proposition 3.51) we
know that HK is a subgroup of G. In addition the function

f : HK → H ×K
given by f(hk) := (h, k) for h ∈ H and k ∈ K is still a well-defined bijection of sets.
However, as we are not assuming that K is normal in G, f is not necessarily a group
homomorphism if we endow the cartesian product H × K with the usual direct product
binary operation.

In general we have

(39) (hk)(h′k′) = (h(kh′k−1))(kk′),

where kh′k−1 belongs to H because H is normal in G.
So f would be a homomorphism of groups if the set H ×K where considered as a group

with the binary operation (h, k)?(h′, k′) = (h(kh′k−1))(kk′). Of course one would first have
to verify that ? does indeed make the set H×K into a group. We will prove a more general
statement below.

For general groups G1 and G2, we would like to use the formula (39) to define a binary
operation on the cartesian product G1×G2. In this way we would obtain a group in which
we can identify both G1 and G2 as subgroups, intersecting only in the identity element,
and with G1 a normal subgroup (but with G2 not necessarily normal). The only obstacle
is how to define an element g2g

′
1g
−1
2 of G1. After that, for g1, g

′
1 ∈ G1 and g2, g

′
2 ∈ G2 we

could just set (g1, g2) ? (g′1, g
′
2) = (g1(g2g

′
1g
−1
2 ))(g2g

′
2).

Note that in (39), the term kh′k−1 ∈ H is obtained through the action of k ∈ K by
conjugation on h′ ∈ H (which is indeed a well-defined action because H is normal in G). So
a natural attempt to define g2g

′
1g
−1
2 ∈ G1 is to interpret such an action in a more abstract

way.

We already encountered the group of automorphisms of a group earlier, see for instance
Exercise 1.107.

Definition 5.17. Let G be a group. An isomorphism from G to G is called an automor-
phism of G. The set of automorphisms of G is denoted Aut(G).

Exercise 5.18. Prove that Aut(G) is a group, with the binary operation given by compo-
sition of automorphisms (in particular Aut(G) is a subgroup of SG).
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Exercise 5.19. Let G be a group and let H be a normal subgroup of G. Prove that the
permutation representation associated to the action of G via conjugation on the set H gives
a well-defined group homomorphism

ρ : G→ Aut(H)

that has ker(ρ) = CG(H).

Theorem 5.20. Let H and K be groups and let

ρ : K → Aut(H)

be a group homomorphism. We define a binary operation ?ρ on the set H ×K by

(h, k) ?ρ (h′, k′) := (h · (ρ(k)(h′)), k · k′).

Then the following claims are valid.

(i) The pair (H ×K, ?ρ) is a group of order |H||K|.
(ii) The sets

H̃ := {(h, 1) : h ∈ H} and K̃ := {(1, k) : k ∈ K}
are subgroups of (H ×K, ?ρ) and the maps h 7→ (h, 1) for h ∈ H and k 7→ (1, k) for
k ∈ K define isomorphisms

H ∼= H̃ and K ∼= K̃.

(iii) The subgroup H̃ is normal in (H ×K, ?ρ).
(iv) H̃ ∩ K̃ = {1} and H̃ ?ρ K̃ = (H ×K, ?ρ).
(v) For x = (h, 1) ∈ H̃ and y = (1, k) ∈ K̃ one has

y ?ρ x ?ρ y
−1 = (ρ(k)(h), 1).

Proof. We first show ?ρ is associative. Let a, b, c ∈ H and x, y, z ∈ K. Then

((a, x) ?ρ (b, y)) ?ρ (c, z) =(a(ρ(x)(b)), xy) ?ρ (c, z)

=(a(ρ(x)(b))(ρ(xy)(c)), xyz)

=(a(ρ(x)(b))(ρ(x)(ρ(y)(c))), xyz)

=(a(ρ(x)(b(ρ(y)(c)))), xyz)

=(a, x) ?ρ (b(ρ(y)(c)), yz)

=(a, x) ?ρ ((b, y) ?ρ (c, z)).

The element (1, 1) is the identity because

(h, k) ?ρ (1, 1) = (h(ρ(k)(1)), k1) = (h1, k1) = (h, k)

= (ρ(1)(h), k) = (1(ρ(1)(h)), 1k) = (1, 1) ?ρ (h, k).

Given (h, k) ∈ H ×K the inverse element is

(h, k)−1 := (ρ(k−1)(h−1), k−1).
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Indeed,

(h, k) ?ρ (h, k)−1 =(h, k) ?ρ (ρ(k−1)(h−1), k−1)

=(h(ρ(k)(ρ(k−1)(h−1)), kk−1)

=(h(ρ(k)(ρ(k)−1(h−1)), kk−1)

=(hh−1, kk−1)

=(1, 1)

=(ρ(k−1)(1), 1)

=(ρ(k−1)(h−1h), k−1k =

=((ρ(k−1)(h−1))(ρ(k−1)(h)), k−1k)

=(ρ(k−1)(h−1), k−1) ?ρ (h, k)

=(h, k)−1 ?ρ (h, k).

The order of the group (H ×K, ?ρ) is just the cardinality of H ×K which is just |H||K|.
This completes the proof of claim (i).

We have

(40) (h, 1) ?ρ (h′, 1) = (h(ρ(1)(h′)), 11) = (hh′, 1)

and

(h, 1)−1 = (ρ(1)(h−1), 1) = (h−1, 1)

so H̃ is a subgroup of G. Moreover the function fH : H → H̃ given by fH(h) = (h, 1) is a
homomorphism because (40) implies that

fH(hh′) = (hh′, 1) = (h, 1) ?ρ (h′, 1) = fH(h) ?ρ fH(h′).

Since fH is clearly a bijection, it is an isomorphism H ∼= H̃.
We have

(41) (1, k) ?ρ (1, k′) = (1(ρ(k)(1)), kk′) = (11, kk′) = (1, kk′)

and

(1, k)−1 = (ρ(k−1)(1), k−1) = (1, k−1)

so K̃ is a subgroup of G. Moreover the function fK : K → K̃ given by fK(k) = (1, k) is a
homomorphism because (41) implies that

fK(kk′) = (1, kk′) = (1, k) ?ρ (1, k′) = fK(k) ?ρ fK(k′).

Since fK is clearly a bijection, it is an isomorphism K ∼= K̃. This completes the proof of
claim (ii).

It is clear that H̃ ∩ K̃ = {1} and also that H̃ ?ρ K̃ = (H ×K, ?ρ), so (iv) is valid.
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We prove claim (v) before proving claim (iii). We have

(1, k) ?ρ (h, 1) ?ρ (1, k)−1 =(1(ρ(k)(h)), k1) ?ρ (1, k)−1

=(ρ(k)(h), k) ?ρ (1, k−1)

=((ρ(k)(h))(ρ(k)(1)), kk−1)

=(ρ(k)(h)1, kk−1)

=(ρ(k)(h), 1).

This proves claim (v).

Now claim (v) implies in particular that K̃ ⊆ N(H×K,?ρ)(H̃). Since (H×K, ?ρ) = H̃ ?ρ K̃,

and since obviously H̃ ⊆ N(H×K,?ρ)(H̃), we get that

N(H×K,?ρ)(H̃) = (H ×K, ?ρ).

This means that H̃ is normal in (H × K, ?ρ), which proves claim (iii) and completes the
proof. �

Definition 5.21. Let H and K be groups and let

ρ : K → Aut(H)

be a group homomorphism. The group (H ×K, ?ρ) is the ‘semidirect product of H and K
with respect to ρ’ and is denoted by H oρ K, or simply by H o K when ρ is clear from
context.

Notation 5.22. We use the canonical isomorphisms described in Theorem 5.20 (ii) to
identify both H of K with subgroups of H oρ K, and so we henceforth drop the notation

H̃, K̃ and simply write H and K in their place. As usual, we often drop the binary operation
?ρ from all notation.

We sometimes also write k · h := ρ(k)(h) for h ∈ H, k ∈ K, whenever ρ is clear from
context. With this notation, the formula for the binary operation in H oK becomes

(h, k)(h′, k′) = (h(k · h′), kk′)
and the formula of Theorem 5.20 (v) becomes

khk−1 = k · h
for any h ∈ H and k ∈ K.

Remark 5.23. The symbol H oK reminds us that, under the identifications of Notation
5.22, H is a normal subgroup of HoK, while K is not necessarily normal in HoK. Unlike
the direct product ×, the semidirect product o is certainly not symmetric.

The following result clarifies when exactly K can be normal in H oK.

Proposition 5.24. Let H and K be groups and let

ρ : K → Aut(H)

be a group homomorphism. Then the following conditions are equivalent.

(i) The identity function between H oK and H ×K is a group homomorphism.
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(ii) The identity function between H oK and H ×K is a group homomorphism.
(iii) ρ is the trivial homomorphism from K to Aut(H) (meaning ρ(k) = idH for every

k ∈ K).
(iv) K is normal in H oK.

Proof. It is clear that (i) and (ii) are equivalent, since the equality of underlying cartesian
products H ×K = H ×K is obviously bijective.

Now condition (i) holds if and only if

(h(ρ(k)(h′)), kk′) = (h, k) ?ρ (h′, k′) = (h, k)(h′, k′) = (hh′, kk′)

for every h, h′, k, k′. Equivalently h(ρ(k)(h′)) = hh′ for every h, h′, k. Equivalently ρ(k)(h′) =
h′ for every k ∈ K and every h′ ∈ H. Equivalently ρ(k) = idH for every k ∈ K. This proves
that conditions (i) and (iii) are equivalent.

We now prove that conditions (iii) and (iv) are equivalent. Since H o K = HK and
trivially K normalises K, we know that K is normal in H oK if and only if H normalises
K. it is enough to prove that H normalises K if and only if ρ(k) = idH for every k ∈ K.

Now H normalises K if and only if for every x ∈ H and y ∈ K the element xyx−1 belongs
to K, if and only if (xyx−1)y−1 belongs to K. But x(yx−1y−1) always belongs to H (since
H is normal), so H normalises K if and only if for every x ∈ H and y ∈ K the element
xyx−1y−1 belongs to H ∩K = {1}, if and only xy = yx for every x ∈ H and y ∈ K, if and
only x = yxy−1 for every x ∈ H and y ∈ K.

To conclude the proof or the equivalence of (iii) and (iv) we use Theorem 5.20 (v). For
x = (h, 1) ∈ H and y = (1, k) ∈ K one has yxy−1 = (ρ(k)(h), 1). Therefore x = yxy−1 for
every x ∈ H and y ∈ K if and only if ρ(k)(h) = h for every k ∈ K and every h ∈ H, if and
only if ρ(k) = idH for every k ∈ K. tis completes the proof. �

Examples 5.25.
(i) Let G be a group. The homomorphism ρ : G → Aut(G) given by ρ(g)(g′) = gg′g−1 for
all g, g′ ∈ G defines a group G o G = G oρ G in which (g1, g2)(g3, g4) = (g1g2g3g

−1
2 , g2g4).

This group is isomorphic to G×G if and only if G is abelian.
(ii) Let

ρ : Z/2Z→ Aut(Z/3Z)

be given by ρ(0)(x) = x and by ρ(1)(x) = −x for x ∈ Z/3Z. It is easy to see that ρ is
a homomorphism. Then the group Z/3Z oρ Z/2Z is a non-abelian group of order 6 and
contains H = {(0, 0), (1, 0), (2, 0)} as a normal subgroup. In fact, it is easy to see that the
map

Z/3Z oρ Z/2Z→ D6

given by

(0, 0) 7→ 1, (1, 0) 7→ r, (2, 0) 7→ r2, (0, 1) 7→ s, (1, 1) 7→ sr, (2, 1) 7→ sr2

is an isomorphism.
(iii) More generally, let

ρ : Z/2Z→ Aut(Z/nZ)

be given by ρ(0)(x) = x and by ρ(1)(x) = −x for x ∈ Z/nZ. It is easy to see that ρ
is a homomorphism. Then the group Z/nZ oρ Z/2Z is a non-abelian group of order 2n
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and contains H = {(0, 0), (1, 0), (2, 0), . . . , (n − 1, 0)} as a normal subgroup. In fact, as a
straightforward generalisation of part (ii), one sees that

Z/nZ oρ Z/2Z→ D2n.

(iv) More generally, for any abelian group H, let

ρ : Z/2Z→ Aut(H)

be given by ρ(0)(x) = x and by ρ(1)(x) = −x for x ∈ H. It is easy to see that ρ is a
homomorphism. Then the group H oρ Z/2Z contains H as a normal subgroup of index 2.

As an example one may consider the case H = Z and obtain the group

D∞ := Z o% Z/2Z.

This group is non-abelian, so in particular it is not isomorphic to Z. For instance one has

(6, 1)(2, 0) = (6 + ρ(1)(2), 1 + 0) = (6− 2, 1) = (4, 1)

and

(2, 0)(6, 1) = (2 + ρ(0)(6), 0 + 1) = (2 + 6, 1) = (8, 1).

(v) More generally, for any abelian group H, let

ρ : Z/2nZ→ Aut(H)

be given by ρ(k)(x) = (−1)kx for 0 ≤ k ≤ 2n− 1 and for x ∈ H. It is easy to see that ρ is
a homomorphism.

As an example we consider the case H = Z/3Z and n = 2. The group Z/4Zoρ Z/3Z has
order 12 and we claim that it is non-abelian, so for instance it cannot have isomorphism
class C12, or isomorphism class C2 × C6. We also claim that it is not isomorphic to D12

or to A4. In this way, we have used the semidirect product to construct a genuinely new
group that we had not encountered previously.

We have

(1, 1)(2, 0) = (1 + ρ(1)(2), 1 + 0) = (1− 2, 1) = (2, 1)

while

(2, 0)(1, 1) = (2 + ρ(0)(1), 0 + 1) = (2 + 1, 1) = (0, 1),

so Z/4Z oρ Z/3Z is non-abelian.
In addition D12 and A4 do not have any elements of order 4, but Z/4Z oρ Z/3Z con-

tains the cyclic subgroup Z/4Z of order 4 (which in fact is the unique Sylow 2-subgroup).
Therefore Z/4Z oρ Z/3Z cannot be isomorphic to either D12 or A4.
(vi) Let H be a group. Let

ρ = id : Aut(H)→ Aut(H)

be the identity map. The semidirect product

Hol(H) := H oid Aut(H)

is called the ‘holomorph’ of H.
(vii) Let p and q be distinct primes with, say, p < q. We note that, by [2, Prop. 4.16, p.
135] (or Exercise 2.101), the group Aut(Z/qZ) is cyclic of order q − 1, with each element
given by multiplication by an element of {1, 2, . . . , q − 1}.
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We saw in Example 4.91 that if p - q− 1 then any group of order pq is necessarily cyclic.
This is consistent with the fact that there is no non-trivial homomorphism from Z/pZ to
Aut(Z/qZ).

If on the other hand p | q − 1, then one may use [2, Prop. 4.16, p. 135] and Cauchy’s
Theorem to show that there is a non-trivial homomorphism

ρ : Z/pZ→ Aut(Z/qZ).

It can further be proved that the associated semidirect product Z/qZoρZ/pZ is the unique
(up to isomorphism) non-abelian group of order pq.

Exercise 5.26. Prove that Hol(Z/2Z× Z/2Z) ∼= S4.

Exercise 5.27. Construct a non-abelian group of order 21 and a non-abelian group of order
39.

Exercise 5.28. Construct two non-isomorphic non-abelian groups of order 27.

As in the case of direct products, we have a Recognition Theorem for semidirect products.

Theorem 5.29. Let G be a group. Let H be a normal subgroup of G. Let K be a subgroup
of G. Assume that

H ∩K = {1}.
Let

ρ : K → Aut(H)

be given by

ρ(k)(h) := khk−1.

Then HK ∼= H oρ K.
If in particular G = HK then G ∼= H oρ K.

Proof. We know HK is a subgroup of G by Corollary 3.53 and Proposition 3.51 (since H is
normal in G). By Exercise 5.11, each element of HK has a unique expression of the form hk
with h ∈ H and k ∈ K. The function hk 7→ (h, k) is a well-defined bijection HK → HoρK.
The fact that it is a group homomorphism now follows from (39). �

The above result is linked to a general bit of terminology, which we include here only for
completeness.

Definition 5.30. Let G be a group and let H be a subgroup of G. A subgroup K of G is
called a ‘complement for H in G’ if both G = HK and H ∩K = {1}.

Example 5.31. In Example 4.91 we saw that, if a group G has order pq for distinct primes
p and q, with p < q, then G has a normal Sylow q-subgroup Q. We also saw that if p - q−1,
then G is necessarily cyclic.

Let P be a Sylow p-subgroup of P . In either case, one has Q ∩ P = {1} by Lagrange’s
Theorem. One also has that QP = G and therefore Theorem 5.29 implies that G is
isomorphic to a semidirect product Qoρ P .

We note that by Theorem 5.33 and Proposition 5.46 below, the unique isomorphism class
of abelian groups of order pq is Cpq.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE
LLAMA O ENVÍA WHATSAPP: 689 45 44 70

- - -

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS
CALL OR WHATSAPP:689 45 44 70

www.cartagena99.com no se hace responsable de la información contenida en el presente documento en virtud al
Artículo 17.1 de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico, de 11 de julio de 2002.
Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganoslo saber y será retirada.



106 DANIEL MACÍAS CASTILLO

In the case p - q−1 we already know that G is also isomorphic to Q×P , and Proposition
5.24 shows that ρ : P → Aut(Q) must be the trivial homomorphism.

Suppose now that p | q − 1. In this case, in addition to the isomorphism class Cpq, there
is a unique non-abelian group of order pq up to isomorphism. This claim is equivalent to
verifying that all non-trivial homomorphisms ρ : P → Aut(Q) lead to isomorphic semidirect
products.

Let y be a generator of P . By [2, Prop. 4.16, p. 135] (or Exercise 2.101) we know that
Aut(Q) is cyclic of order q − 1. Therefore it contains a unique subgroup of order p. Let
γ be any element of Aut(Q) of order p. Then any homomorphism ρ : P → Aut(Q) must
map y to a power of γ. The possibilities are ρj(y) := γj for each 0 ≤ j ≤ p− 1, with ρ0 the
trivial homomorphism.

Set Gj := Q oρj P for some j with 2 ≤ j ≤ p − 1. We explain why Gj is isomorphic to
G1. Fix k with jk congruent to 1 modulo p. Then the map G1 → Gj given by

(x, yl) 7→ (x, ylk),

for x ∈ Q, is easily seen to be a group homomorphism and therefore also a group isomor-
phism.

This shows that all non-abelian groups of order pq must be isomorphic.

Example 5.32. One can show that any group G of order 30 has a subgroup H of order 15
(see [2, p. 143,144]). Such a subgroup H is necessarily both normal (by Lemma 3.31) and
cyclic (by Example 4.91).

By Sylow’s Theorem, G also has a subgroup K of order 2, and again by Theorem 5.29,
G must be isomorphic to a semidirect product H oρ K for some ρ : K → Aut(H).

We note that by Theorem 5.33 and Proposition 5.46 below, the unique isomorphism class
of abelian groups of order 30 is C30.The trivial homomorphism corresponds to this class.

Any non-trivial ρ must map the non-trivial element of K to an element of order 2 in
Aut(H). Now using the fact that H is cyclic of order 15 one may show, either directly or
via the general result [2, Prop. 4.16, p. 135], that Aut(H) only contains three elements of
order 2. In this way we see that, up to isomorphism, there are (at most) three non-abelian
groups of order 30.

In fact there are exactly three non-abelian groups of order 30 up to isomorphism, because
the groups Z/5Z×D6, Z/3Z×D10 and D30 are pairwise non-isomorphic.

5.2. The Fundamental Theorem of finite abelian groups.

5.2.1. The statements. In this section we state the Fundamental Theorem, which we shall
prove in section 5.2.3 below. In fact we will discuss two different but equivalent formulations
of this result.

Theorem 5.33. Let G be a finite abelian group. Then G has isomorphism class

Cn1 × Cn2 × . . .× Cns
for some integers s ∈ N and nj ≥ 2 with the property that nj+1 divides nj for all 1 ≤ j ≤
s− 1.

This description of the isomorphism class of G is unique: if G has isomorphism class

Cm1 × Cm2 × . . .× Cmt
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for some integers mi ≥ 2 with the property that mi+1 divides mi for all 1 ≤ i ≤ t− 1, then

t = s and mi = ni for all 1 ≤ i ≤ s.

Definition 5.34. The integers n1, . . . , ns are the ‘invariant factors’ of G. One sometimes
says that G has ‘type’ (n1, . . . , ns).

Remark 5.35. One has |G| = n1 . . . ns. Theorem 5.33 thus states that, for a fixed n ∈ N,
there is a bijection between the sets of isomorphism classes of finite abelian groups of order
n, and the set of all finite sequences of integers n1, . . . , ns (greater than 1) which satisfy
nj+1 | nj for all j as well as n1 . . . ns = n.

In any such sequence we have n1 ≥ . . . ≥ ns, and each nj divides n. So any prime factor
p of n must divide some invariant factor nj , and then it must also divide nj−1, . . . , n1. In
particular, every prime divisor of n must divide n1.

Corollary 5.36. If G is a finite abelian group and |G| is square-free then G is cyclic.

Proof. As explained in Remark 5.35, if |G| = p1 . . . pm for distinct primes pi, then each pi
must divide the first invariant factor n1. Therefore |G| | n1 | |G| so n1 = |G|, It follows that
s = 1 and that G has isomorphism class Cn1 = C|G|, so G is cyclic. �

Example 5.37. We determine the isomorphism classes of all abelian groups of order 180 =
22 · 32 · 5. We must have 30 = 2 · 3 · 5 | n1 so the only possibilities for n1 are

180 = 22 · 32 · 5, 60 = 22 · 3 · 5, 90 = 2 · 32 · 5, 30 = 2 · 3 · 5.
We consider each of these cases individually. If n1 = 180 then s = 1 and we are done.

If n1 = 90 then the only number n2 ≥ 2 dividing n1 with the property that n1n2 divides
180 is n2 = 2. In this case n1n2 = 180 so s = 2 and we are done.

If n1 = 60 then the only number n2 ≥ 2 dividing n1 with the property that n1n2 divides
180 is n2 = 3. In this case n1n2 = 180 so s = 2 and we are done.

We finally consider the case n1 = 30. A priori, the only candidates for n2 are 2, 3 or 6.
But if n2 = 2 then since n3 | n2 we would have n3 = 2, but then n1n2n3 would be divisible
by 23, which is impossible. Similarly if n2 = 3 then since n3 | n2 we would have n3 = 3, but
then n1n2n3 would be divisible by 33, which is impossible. Therefore the only possibility is
n2 = 6 and then s = 2 and we are done.

We have proved that all possible isomorphism classes of abelian groups of order 180 are

(42) C180, C90 × C2, C60 × C3, C30 × C6.

We now give another formulation of the Fundamental Theorem.

Theorem 5.38. Let G be a finite abelian group and let

|G| = pα1
1 pα2

2 . . . pαkk

be the prime decomposition of G. Then

(43) G ∼= A1 ×A2 × . . .×Ak
where each group Ai is the Sylow pi-subgroup of G and has isomorphism class

C
p
β1,i
i

× C
p
β2,i
i

× . . .× C
p
βti,i
i
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108 DANIEL MACÍAS CASTILLO

for natural numbers ti and βj,i with

(44) β1,i ≥ β2,i ≥ . . . ≥ βti,i.

This decomposition is unique: if G ∼= B1×B2× . . .×Bk with |Bi| = pαi then for all i we
have Bi ∼= Ai and Bi and Ai have the same sequence of invariant factors β1,i, β2,i, . . . , βti,i.

Remark 5.39. Obviously one has |Ai| = pαii and β1,i + β2,i + . . . βti,i = αi. Also since G is
abelian each group Ai is the unique Sylow pi-subgroup of G. The fact that G is isomorphic
to the direct product of its own Sylow subgroups is sometimes referre to as the Primary
Decomposition Theorem for finite abelian groups.

Definition 5.40. The integers p
βj,i
i , for 1 ≤ i ≤ k and 1 ≤ j ≤ ti, are called the ‘elementary

divisors’ of G. The description given in Theorem 5.38 is then the ‘elementary divisor
decomposition’ of G.

Remark 5.41. The elementary divisors of G are thus partitioned into the invariant factors
of each of its Sylow subgroups Ai. Beware, however, that the elementary divisors of G are
in general not the invariant factors of G itself.

Exercise 5.42.
(i) Let p be a prime number. Prove that the number of isomorphism classes of abelian groups
of order pα is equal to the number of partitions of α, in the sense of Definition 4.69 (ii).
Determine all isomorphism classes of abelian groups of order pα for each of α = 1, 2, 3, 4, 5.
(ii) Let n = pα1

1 . . . pαkk . Let ak be the number of partitions of αk. Show that the number of
isomorphism classes of abelian groups of order n is a1 . . . ak.

Remark 5.43. In particular, the number of isomorphism classes of abelian groups of order
pα is independent of p.

Examples 5.44.
(i) As we already verified in Example 5.37, if we consider n = 180 = 22 · 32 · 5, since the
number of partitions of 2 is 2 and the number of partitions of 1 is 1, we get that there are
2 · 2 · 1 = 4 isomorphism classes of abelian groups of order 180. These were already listed
in (42).
(ii) For n = 1800 = 23 · 32 · 52 we have 3 partitions of 3 and 2 partitions of 2 and hence 12
isomorphism classes of abelian groups of order 1800. The possible isomorphism classes of
Sylow 2-subgroups of such a group are

C8, C4 × C2, C2 × C2 × C2.

The possible isomorphism classes of Sylow 3-subgroups of such a group are C9 or C3 ×C3.
The possible isomorphism classes of Sylow 5-subgroups of such a group are C25 or C5×C5.
Thus the 12 isomorphism classes of abelian groups of order 1800 are

C8 × C9 × C25, C8 × C9×C5 × C5, C8 × C3 × C3 × C25,

C8 × C3 × C3 × C5 × C5, C4 × C2×C9 × C25, C4 × C2 × C9 × C5 × C5,

C4 × C2 × C3 × C3 × C25, C4 × C2 × C3×C3 × C5 × C5, C2 × C2 × C2 × C9 × C25,

C2 × C2 × C2 × C9 × C5 × C5, C2 × C2 × C2×C3 × C3 × C25, C2 × C2 × C2 × C3 × C3 × C5 × C5.
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Remark 5.45. As we already mentioned in Remark 5.41, the elementary divisors of G
are invariant factors of the Sylow subgroups of G but not of G itself. For instance in
the above list of classes, we have not expressed the given isomorphism classes in terms of
the corresponding invariant factors. The next result gives us a crucial step in translating
decompositions in terms of invariant factors into decompositions in terms of elementary
divisors, and vice versa.

Proposition 5.46. Fix m,n ∈ N.

(i) The group Z/mZ×Z/nZ is isomorphic to the group Z/(mn)Z if and only if m and
n are coprime.

(ii) If n = pα1
1 . . . pαkk then

Z/nZ ∼= Z/pα1
1 Z× . . .× Z/p

αk
k Z.

Proof. Claim (ii) follows from claim (i) through a straightforward induction argument. We
leave the details to the reader and only discuss the proof of claim (i).

Set l := lcm(m,n), so that l = mn if and only if (m,n) = 1. Then for any (a, b) ∈
Z/mZ× Z/nZ we have

l(a, b) = (la, lb) = (0, 0).

So if (m,n) 6= 1, every element of Z/mZ × Z/nZ has order at most l < mn. Then
Z/mZ × Z/nZ does not contain any elements of order mn and therefore it cannot be
isomorphic to Z/(mn)Z.

Conversely if (m,n) = 1 then

o(([1]m, [1]n)) = lcm(o([1]m), o([1]m)) = l = mn

so the cyclic subgroup 〈([1]m, [1]n)〉 of Z/mZ×Z/nZ has order mn, and thus Z/mZ×Z/nZ
must in fact be cyclic, as required. �

Remarks 5.47.
(i) We may use Proposition 5.46 to obtain the elementary divisors of a finite abelian group
G from its sequence of invariant factors n1, n2, . . . , ns. Let

|G| = pα1
1 pα2

2 . . . pαkk = n1n2 . . . ns.

Write down the prime factorisation of each nj as

nj = p
βj,1
1 p

βj,2
2 . . . p

βj,k
k ,

for integers βj,i ≥ 0. Then Proposition 5.46 implies that

Z/njZ ∼= Z/pβj,11 Z× Z/pβj,22 × . . .× Z/pβj,kk ,

where any factor of the form Z/p0Z = Z/Z = {1} may obviously be deleted from the above

decomposition. Then the elementary divisors of G are precisely the integers p
βj,i
i for each

1 ≤ i ≤ k and each 1 ≤ j ≤ s that satisfies βj,i 6= 0.
(ii) Conversely, given the elementary divisors of a finite abelian group G one easily obtains
the invariant factors as follows. Suppose |G| = pα1

1 . . . pαkk . Set

s := max(t1, . . . , tk).
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Set βj,i := 0 whenever s ≥ j > ti, thus adding 1’s to the list of invariant factors p
βj,i
i . Then

for each 1 ≤ j ≤ s the j-th invariant factor nj is

nj := p
βj,1
1 pβj,22 . . . p

βj,k
k .

Example 5.48. We may use the method outlined in Remarks 5.47(i) to obtain the elemen-
tary divisors of an abelian group G from any cyclic decomposition of G, not just from the
decomposition in terms of invariant factors. For instance if G = Z/6Z × Z/15Z then the
elementary divisors of G are 2, 3, 3, 5 so in particular G also has isomorphism class

C2 × C3 × C3 × C5.

Example 5.49. As in Example 5.44 (ii) we consider the case n = 1800 = 23 · 32 · 52. We
already listed all possible sequences of elementary divisors of abelian groups of order 1800,
through the corresponding isomorphism classes. Let us now re-write each such isomorphism
class in terms of its corresponding sequence of invariant factors.

C8 × C9 × C25 =C1800, C8 × C9 × C5 × C5 = C360 × C5,

C8 × C3 × C3 × C25 =C600 × C3, C8 × C3 × C3 × C5 × C5 = C120 × C15,

C4 × C2 × C9 × C25 =C900 × C2, C4 × C2 × C9 × C5 × C5 = C180 × C10,

C4 × C2 × C3 × C3 × C25 =C300 × C6, C4 × C2 × C3 × C3 × C5 × C5 = C60 × C30,

C2 × C2 × C2 × C9 × C25 =C450 × C2 × C2, C2 × C2 × C2 × C9 × C5 × C5 = C90 × C10 × C2,

C2 × C2 × C2 × C3 × C3 × C25 =C150 × C6 × C2, C2 × C2 × C2 × C3 × C3 × C5 × C5 = C30 × C30 × C2.

Let us briefly indicate all the relevant computations involved in each of the 12 cases.

• The sequence of invariant factors n1 = 1800 gives n1 = 23 ·32 ·52 and thus elementary
divisors 8, 9, 25. Conversely, the elementary divisors 8, 9, 25 give s = 1 and n1 =
8 · 9 · 25 = 1800.
• The invariant factors n1 = 360 = 23 · 32 · 5 and n2 = 5 give elementary divisors

8, 9, 5, 5. Conversely the elementary divisors 8, 9, 5, 5 give s = 2, n1 = 8 · 9 · 5 = 360
and n2 = 1 · 1 · 5 = 5.
• The invariant factors n1 = 600 = 23 · 3 · 52 and n2 = 3 give elementary divisors

8, 3, 3, 25. Conversely the elementary divisors 8, 3, 3, 25 give s = 2, n1 = 8·3·25 = 600
and n2 = 1 · 3 · 1 = 3.
• The invariant factors n1 = 120 = 23 · 3 · 5 and n2 = 15 = 3 · 5 give elementary

divisors 8, 3, 3, 5, 5. Conversely the elementary divisors 8, 3, 3, 5, 5 give s = 2, n1 =
8 · 3 · 5 = 120 and n2 = 1 · 3 · 5 = 15.
• The invariant factors n1 = 900 = 22 · 32 · 52 and n2 = 2 give elementary divisors

4, 2, 9, 25. Conversely the elementary divisors 4, 2, 9, 25 give s = 2, n1 = 4·9·25 = 900
and n2 = 2 · 1 · 1 = 2.
• The invariant factors n1 = 180 = 22 · 32 · 5 and n2 = 10 = 2 · 5 give elementary

divisors 4, 2, 9, 5, 5. Conversely the elementary divisors 4, 2, 9, 5, 5 give s = 2, n1 =
4 · 9 · 5 = 180 and n2 = 2 · 1 · 5 = 10.
• The invariant factors n1 = 300 = 22 · 3 · 52 and n2 = 6 = 2 · 3 give elementary

divisors 4, 2, 3, 3, 25. Conversely the elementary divisors 4, 2, 3, 3, 25 give s = 2,
n1 = 4 · 3 · 25 = 300 and n2 = 2 · 3 · 1 = 6.
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• The invariant factors n1 = 60 = 22 · 3 · 5 and n2 = 30 = 2 · 3 · 5 give elementary
divisors 4, 2, 3, 3, 5, 5. Conversely the elementary divisors 4, 2, 3, 3, 5, 5 give s = 2,
n1 = 4 · 3 · 5 = 60 and n2 = 2 · 3 · 5 = 30.
• The invariant factors n1 = 450 = 2 · 32 · 52, n2 = 2 and n3 = 2 give elementary

divisors 2, 2, 2, 9, 25. Conversely the elementary divisors 2, 2, 2, 9, 25 give s = 3,
n1 = 2 · 9 · 25 = 450, n2 = 2 · 1 · 1 = 2 and n3 = 2 · 1 · 1 = 2.
• The invariant factors n1 = 90 = 2 · 32 · 5, n2 = 10 = 2 · 5 and n3 = 2 give elementary

divisors 2, 2, 2, 9, 5, 5. Conversely the elementary divisors 2, 2, 2, 9, 5, 5 give s = 3,
n1 = 2 · 9 · 5 = 90, n2 = 2 · 1 · 5 = 10 and n3 = 2 · 1 · 1 = 2.
• The invariant factors n1 = 150 = 2 · 3 · 52, n2 = 6 = 2 · 3 and n3 = 2 give elementary

divisors 2, 2, 2, 3, 3, 25. Conversely the elementary divisors 2, 2, 2, 3, 3, 25 give s = 3,
n1 = 2 · 3 · 25 = 150, n2 = 2 · 3 · 1 = 6 and n3 = 2 · 1 · 1 = 2.
• The invariant factors n1 = 30 = 2 ·3 ·5, n2 = 30 = 2 ·3 ·5 and n3 = 2 give elementary

divisors 2, 2, 2, 3, 3, 5, 5. Conversely the elementary divisors 2, 2, 2, 3, 3, 5, 5 give s =
3, n1 = 2 · 3 · 5 = 30, n2 = 2 · 3 · 5 = 30 and n3 = 2 · 1 · 1 = 2.

Exercise 5.50. Prove that Theorem 5.33 is valid if and only if Theorem 5.38 is valid (you
may and should, of course, use Proposition 5.46).

5.2.2. The exponent. In this section we briefly introduce a general notion, and some related
results in the case of finite abelian groups, that will be useful in the sequel.

Definition 5.51. Let G be a finite group. The ‘exponent’ e(G) of G is

e(G) := min{n ∈ N : gn = 1 for all g ∈ G}.

Remark 5.52. The exponents of isomorphic groups coincide.

Lemma 5.53. Let G be a finite abelian group. Then

e(G) = max{o(g) : g ∈ G}.

Proof. Obviously e(G) ≥ max{o(g) : g ∈ G}. Let x ∈ G be an element of maximal order.
We must simply prove that o(x) = e(G).

Now e(G) is the least common multiple of the finite set of natural numbers {o(g) : g ∈ G}.
If we can prove that o(g) divides o(x) for every g ∈ G then we must have e(G) = o(x), as
required.

To argue by contradiction, assume that we have g ∈ G for which o(g) - o(x). Then there
is a prime number p and a natural number j with the property that pj | o(g) but pj - o(x).
Write o(x) = pik with p - k and i < j.

We set x′ := xp
i

and g′ := go(g)/pj . Then o(x′) = k and o(g′) = pj , so that o(x) and o(g′)
are coprime. Now since G is abelian, the order of the element x′g′ is

o(x′)o(g′) = kpj > kpi = o(x).

This would contradict the maximality of o(x). �

Lemma 5.54. If G is a finite abelian group then o(g) divides e(G) for every g ∈ G.

Proof. Fix x ∈ G with the property that o(x) = e(G). To argue by contradiction we fix
y ∈ G for which o(y) - o(x).
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Then there exists a prime number p and integers r and s, with 0 ≤ r < s, for which pr

is the power of p which occurs in the prime decomposition of o(x) but ps is the power of p
which occurs in the prime decomposition of o(y).

Now

o(xp
r
) =

o(x)

(o(x), pr)
=

o(x)

pr

is not divisible by p but

o(yo(y)/ps) =
o(y)

(o(y), o(y)/ps)
=

o(y)

o(y)/ps
= ps.

In particular o(xp
n
) and o(yo(y)/ps) are coprime.

Now, since G is assumed to be abelian, the product z := xp
r
yo(y)/ps has order

o(z) = lcm(o(xp
n
), o(yo(y)/ps)) = o(xp

r
)o(yo(y)/ps) =

o(x)

pr
ps = o(x)ps−r > o(x).

This contradicts the maximality of o(x) in the choice of the element x and thus completes
the proof. �

Proposition 5.55. Let G be a finite abelian group. Then the first invariant factor n1 of G
is equal to e(G).

Proof. On the one hand, since G contains an element of order n1, Lemma 5.54 implies that
n1 divides e(G). On the other hand, for any element

(a1, a2, . . . , as) ∈ Z/n1Z× Z/n2Z× . . .× Z/nsZ
one has

(45) n1(a1, a2, . . . , as) = (n1a1,
n1

n2
n2as, . . . ,

n1

ns
nsas) = (0,

n1

n2
0, . . . ,

n1

ns
0) = (0, 0, . . . , 0),

because n1 is divisible by every other invariant factor nj of G.
Now (45) implies that gn1 = 1 for every g ∈ G. Therefore e(G) ≤ n1. We conclude that

n1 = e(G), as required. �

Lemma 5.56. Let G be a finite abelian group. Fix an element x in G of maximal order
o(x) = e(G). Fix y ∈ G and consider the left coset y〈x〉 ∈ G/〈x〉. Then there exists z ∈ y〈x〉
with the property that o(z) = o(y〈x〉).

Proof. We have
yo(y〈x〉)〈x〉 = (y〈x〉)o(y〈x〉) = 〈x〉,

so yo(y〈x〉) belongs to 〈x〉 and there exists r ∈ Z such that

(46) yo(y〈x〉) = xr.

Of course one always has (y〈x〉)o(y) = 〈x〉 so o(y〈x〉) divides o(y) and therefore

o(y)

o(y〈x〉)
=

o(y)

(o(y), o(y〈x〉)
= o(yo(y〈x〉)) = o(xr) =

e(G)

(e(G), r)
.

We get that

(e(G), r) = o(y〈x〉)e(G)

o(y)
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so Lemma 5.54 implies that o(y〈x〉) divides (e(G), r), and in particular divides r. We may
and will then fix s ∈ Z for which

(47) r = so(y〈x〉).

We now set z := yx−s ∈ y〈x〉. We must prove that o(z) = o(y〈x〉).
On the one hand, since G is abelian, we have

zo(y〈x〉) = yo(y〈x〉)x−so(y〈x〉) = yo(y〈x〉)x−r = 1,

where we have used both (47) and (46). Thus o(z) divides o(y〈x〉).
On the other hand (z〈x〉)o(z) = 〈x〉 so o(z) divides o(z〈x〉) = o(y〈x〉) (here we have used

that z is chosen to belong to the same left coset of 〈x〉 as y). This completes the proof. �

5.2.3. The proof of Theorem 5.33. In this section we prove the Fundamental Theorem of
finite abelian groups, through its formulation in Theorem 5.33. Recall that, by Exercise
5.38, one then also obtains a proof of Theorem 5.38.

We prove the existence of the claimed decomposition by induction on |G|. We will later
prove the uniqueness claim of Theorem 5.33.

If |G| = 1 then certainly G has isomorphism class C1, which gives the claimed decompo-
sition with s = 1 and n1 = 1.

We now assume that |G| > 1 and that the existence claim of Theorem 5.33 is valid for
every finite abelian group of order strictly less than |G|. We fix z1 ∈ G with maximal order
o(z1) = n1 := e(G) and we set H1 := 〈z1〉.

The quotient group G/H1 is abelian and has order |G|/n1 < |G|. By the inductive
hypothesis there exists r ∈ N and a sequence of integers mj ≥ 2 with the property that
mj+1 | mj for all 1 ≤ j ≤ r − 1 and that G/H1 has isomorphism class

Cm1 × Cm2 × . . .× Cmr .

For notational simplicity we set s := r + 1 and nj := mj−1 for every 2 ≤ j ≤ r. Then
we have a sequence of integers n2, n3, . . . , ns, all greater than or equal to 2, all dividing the
previous one, with the property that G/H1 has isomorphism class

Cn2 × Cn3 × . . .× Cns .

We fix an isomorphism

f : G/H1 :→ Z/n2Z× Z/n3Z× . . .× Z/nsZ.

For each 2 ≤ j ≤ s we set

uj := (0, 0, . . . , 0, 1, 0, . . . , 0) ∈ Z/n2Z×Z/n3Z×. . .Z/nj−1Z×Z/njZ×Z/nj+1Z×. . .×Z/nsZ.

Then o(f−1(uj)) = o(uj) = nj and, by Lemma 5.56, there is

(48) zj ∈ f−1(uj)

with the property that o(zj) = nj .
For each 2 ≤ j ≤ s we set Hj := 〈zj〉 and then also K := H2 . . . Hs, which is a subgroup

of G by Remark 5.10. We write ιK for the inclusion K ⊆ G and πH1 : G → G/H1 for the
projection map. We require the following intermediate result.
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Lemma 5.57. The composition

(πH1 ◦ ιK) : K → G/H1

is surjective. In particular |G/H1| ≤ |K| and |G/H1| = | im(πH1 ◦ ιK)| = |KH1/H1|.

Proof. Fix a left coset xH1 in G/H1. Then for 2 ≤ j ≤ s there are integers aj with the
property that

xH1 =f−1(([a2]n2 , . . . , [as]ns))

=f−1(

j=s∑
j=2

ajuj)

=

j=s∏
j=2

f−1(ajuj)

=

j=s∏
j=2

f−1(uj)
aj

=

j=s∏
j=2

(zjH1)aj

=(

j=s∏
j=2

z
aj
j )H1.

Here the fifth equality holds by (48).

Now k :=
∏j=s
j=2 z

aj
j belongs to K and so we finally get

xH1 = kH1 = πH1(k) = πH1(ιK(k)) = (πH1 ◦ ιK)(k).

This completes the proof of the lemma. �

We shall now use Lemma 5.57 to continue with our proof by induction of the existence
claim of Theorem 5.33. We have that

|K| ≤ |H2| . . . |Hs| = n2 . . . ns = |G/H1| ≤ |K|,

with the last equality from Lemma 5.57. But then all the inequalities must be equalities,
so we find that

(49) |K| = |H2| . . . |Hs| = |G/H1|.

We wish to apply Theorem 5.12 to prove that

(50) K ∼= H2 × . . .×Hs.

To do so we only need to fix 2 ≤ j ≤ s and prove that

Hj ∩ (H2 . . . Hj−1Hj−1 . . . Hs) = {1}.
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But by Proposition 3.49 we have that

|Hj ∩ (H2 . . . Hj−1Hj−1 . . . Hs)| =
|Hj ||H2 . . . Hj−1Hj−1 . . . Hs|
|HjH2 . . . Hj−1Hj−1 . . . Hs|

=
|Hj ||H2 . . . Hj−1Hj−1 . . . Hs|

|K|

≤|Hj ||H2| . . . |Hj−1||Hj−1| . . . |Hs|
|K|

= 1,

with the last equality by (49). This proves that (50) is valid.
With a view to applying Theorem 5.12 again (or Corollary 5.14), this time to the sub-

groups H1 and K, we next claim that

(51) H1 ∩K = {1}.

This is true because, by the Second Isomorphism Theorem 3.56 we have

|K|
|H1 ∩K|

= |KH1/H1| = |G/H1| = |K|,

with the second equality by Lemma 5.57 and the third equality by (49).
Since in addition Proposition 3.49 gives

|H1K| =
|H1||K|
|H1 ∩K|

= |H1||K| = |H1||G/H1| = |G|

we must have H1K = G and so, applying Corollary 5.14 by keeping (51) in mind, we finally
get that G ∼= H1 ×K and therefore, by (50), also that

G ∼= H1
∼= H2 × . . .×Hs.

This proves that G has isomorphism class

Cn1 × Cn2 × . . .× Cns .

To conclude the proof of the existence claim of Theorem 5.33 it is enough to recall that
n2 = o(z2) must divide n1 = e(G) by Lemma 5.54.

We now finally proceed to prove the uniqueness claim of Theorem 5.33. Applying Propo-
sition 5.55 to any two sequences n1, n2, . . . , ns and m1,m2, . . . ,mt of invariant factors of G
we get that

n1 = e(G) = m1.

To now argue by contradiction we assume there is a natural number k with the property
that

n1 = m1, n2 = m2, . . . , nk−1 = mk−1, nk 6= mk.

Without loss of generality we may also assume that nk > mk.
Now since both

G′ := Z/n1Z× Z/n2Z× . . .× Z/nsZ
and

G′′ := Z/m1Z× Z/m2Z× . . .× Z/mtZ
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are isomorphic to G, we may fix an isomorphism

f : G′
∼→ G′′.

We also write

αmk : G′ → G′

for the homomorphism given by αmk(x) = mkx for x ∈ G′, and

βmk : G′′ → G′′

for the homomorphism given by βmk(y) = mky for y ∈ G′′.
We claim that

(52) f ◦ αmk = βmk ◦ f.

Indeed for any x ∈ G′ one has

f(αmk(x)) = f(mkx) = mkf(x) = βmk(f(x)).

Since f is an isomorphism, from (52) we then get that

(53) | im(αmk)| = |f(im(αmk))| = | im(f ◦ αmk)|
= | im(βmk ◦ f)| = |βmk(im(f))| = |βmk(G′′)| = | im(βmk)|.

To finally arrive at a contradiction we will compute the order of the images of αmk and
of βmk . We begin by considering the latter.

We have

im(βmk) = mkG
′′ = mkZ/m1Z×mkZ/m2Z× . . .×mkZ/mk−1Z,

since all additional terms in the direct product G′′ become trivial after multiplying by mk.
Recalling that for 1 ≤ j ≤ k − 1 the Third Isomorphism Theorem 3.58 gives

mk = |Z/mkZ| =
|Z/mjZ|
|mkZ/mjZ|

=
mj

|mkZ/mjZ|

we get that

(54) | im(βmk)| =
j=k−1∏
j=1

|mkZ/mjZ| =
j=k−1∏
j=1

mj

mk
=

∏j=k−1
j=1 mj

mk−1
k

.

Similarly we have that the subset

S := mkZ/n1Z×mkZ/n2Z× . . .×mkZ/nk−1Z× {[0]nk , [mk]nk}

of G′ is contained in im(αmk), and we observe that [0]nk 6= [mk]nk as we have assumed that
mk < nk. By an identical application of the Third Isomorphism Theorem 3.58 to compute
the cardinality of the cartesian product S we get that

(55) | im(αmk)| ≥ |S| = 2

j=k−1∏
j=1

|mkZ/njZ| = 2

j=k−1∏
j=1

nj
mk

= 2

∏j=k−1
j=1 nj

mk−1
k

.
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Recalling our choice of k and combining (53), (54) and (55) we finally get that

j=k−1∏
j=1

nj =

j=k−1∏
j=1

mj = mk−1
k | im(βmk)| = mk−1

k | im(αmk)| ≥ 2

j=k−1∏
j=1

nj .

Since
∏j=k−1
j=1 nj ≥ 1 for any sequence of invariant factors n1, . . . , ns and any index k > 1,

we have arrived at the desired contradiction.
We have proved that nj = mj for every 1 ≤ j ≤ min(s, t). Since

n1 . . . ns = |G| = m1 . . .mt

we must have s = t. This completes the proof of the uniqueness claim and therefore also of
Theorem 5.33.

5.2.4. Groups of small order. For n ≤ 19 it is easy to list all isomorphism classes of groups
of order n, except in the case n = 16, which is much more involved.

There are of course five isomorphism classes of abelian groups of order 16, namely

C16, C8 × C2, C4 × C4, C4 × C2 × C2, C2 × C2 × C2 × C2.

However there are an additional nine isomorphism classes of non-abelian groups of order
16, and fully justifying their classification can get tricky.

We give the complete list of isomorphism classes corresponding to each such n 6= 16.
We leave, as an exercise for the reader, the proper verification that these lists are indeed
complete!

• For n = 1 we only have the class C1.

• For n = 2 we only have the class C2.

• For n = 3 we only have the class C3.

• For n = 4 we have the classes C4 and C2 × C2.

• For n = 5 we only have the class C5.

• For n = 6 we have the class C6 and also the class of S3 = D6.

• For n = 7 we only have the class C7.

• For n = 8 we have the classes C8, C4 × C2 and C2 × C2 × C2 and also the class of
D8 and the class of Q8.

• For n = 9 we only have the classes C9 and C3 × C3.

• For n = 10 we have the class C10 and also the class of D10.

• For n = 11 we only have the class C11.

• For n = 12 we have the classes C12 and C6 × C2 and also the class of A4, the class
of D12 and the class of

Z/3Z o Z/4Z,
where the semidirect product is as discussed in Examples 5.25 (v). See also Example
5.58 below for more details.

• For n = 13 we only have the class C13.

• For n = 14 we have the class C14 and also the class of D14.
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• For n = 15 we only have the class C15.

• For n = 17 we only have the class C17.

• For n = 18 we have the classes C18 and C6 ×C3 and also the class of D18, the class
of S3 × Z/3Z and the class of

(Z/3Z× Z/3Z)o Z/2Z,

where the semidirect product is as discussed in Examples 5.25 (iv).

• For n = 19 we only have the class C19.

Example 5.58. We give a sketch of the method to verify the case n = 12. Let G be a
group of order 12. Let V be a Sylow 2-subgroup of G and let T be a Sylow 3-subgroup of
G. The group V must have isomorphism class C4 or C2 ×C2 while the group T must have
isomorphism class C3.

In Example 4.94 we already saw that either V or T must be normal in G. By Lagrange’s
Theorem we have V ∩ T = {1} so by Theorem 5.29 we know G is a semidirect product,
either of the form V oρ T or of the form T oρ V . In fact in Example 4.94 we proved a
stronger statement: that either T is normal in G or G ∼= A4.

Assume for now that V is normal in G. We must determine all possible homomorphisms
ρ : T → Aut(V ).

If V has isomorphism class C4 then by [2, Prop. 4.16, p. 135] (or Exercise 2.101), Aut(V )
has order 2, so there is no non-trivial homomorphism ρ. In this case the isomorphism class
of G is C12 (since Z/12Z ∼= Z/4Z× Z/3Z).

If instead V has isomorphism class C2 × C2 then one can show that Aut(V ) ∼= S3.
Therefore Aut(V ) has a unique subgroup of order 3. If we fix an element γ of Aut(V )
of order 3 and a generator y of T then the possible homomorphisms T → Aut(V ) are ρj ,
defined by ρj(y) := γj , for each j = 0, 1, 2.

As usual ρ0 is the trivial homomorphism and thus the corresponding semidirect product
is actually a direct product with isomorphism class C6×C2 (since Z/6Z×Z/2Z ∼= Z/2Z×
Z/2Z×Z/3Z). Both ρ1 and ρ2 give rise to semidirect products with isomorphism class A4,
as we already know from Example 4.94. It is also easy to prove this directly.

We now instead assume that T is normal in G. We must determine all possible ho-
momorphisms ρ : V → Aut(T ). Since T has isomorphism class C3, Aut(T ) has order 2,
again by [2, Prop. 4.16, p. 135] (or Exercise 2.101). In fact it is easy to see directly that
Aut(T ) = {id, λ}, where λ inverts the elements of T .

If V has isomorphism class C4 then, in addition to the trivial homomorphism leading to
the isomorphism class C12 again, there is one non-trivial homomorphism ρ, mapping any
generator x of V to λ. The semidirect product T oρV corresponding to this homomorphism
ρ is easily seen to be isomorphic to the semidirect product Z/3Z o Z/4Z that is discussed
in Examples 5.25 (v).

Finally we assume that V = 〈a〉 × 〈b〉 with isomorphism class C2 × C2. The trivial
homomorphism again leads to the isomorphism class C6 × C2. There are three non-trivial
homomorphisms ρj : V → Aut(T ) for j = 1, 2, 3, determined by the equalities

ρ1(a) = λ = ρ1(b), ρ2(a) = 1, ρ2(b) = λ, ρ3(a) = λ, ρ3(b) = 1.
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All three of the corresponding semidirect products can be shown to be isomorphic to D6 ×
Z/2Z, which in turn is isomorphic to D12.

5.3. (More) Exercises. Don’t forget to think about the exercises given throughout the
rest of section 5.

Exercise 5.59. Show that for groups G1, G2, . . . , Gn one has

Z(G1 ×G2 × . . .×Gn) = Z(G1)× Z(G2)× . . .× Z(Gn).

Deduce that a direct product of groups is abelian if and only if each of the factors is abelian.

Exercise 5.60. Let G1 and G2 be groups and let p be a prime. Prove that any Sylow
p-subgroup of G1×G2 is of the form P1×P2, where P1 is a Sylow p-subgroup of G1 and P2

is a Sylow p-subgroup of G2. Deduce that np(G1 ×G2) = np(G1)np(G2). Generalise these
statements to the direct product of n groups G1, G2, . . . , Gn.

Exercise 5.61. Find a subgroup of Q8 × Z/4Z that is not normal in Q8 × Z/4Z.

Exercise 5.62. For n ∈ N we recall that we write E2n for the direct product Z/2Z×Z/2Z×
. . .Z/2Z of n copies of Z/2Z. Prove that all subgroups of Q8 × E2n are normal.

Exercise 5.63. Let p be a prime and let n be a natural number. Find a formula for the
number of subgroups of Epn that have order p.

Exercise 5.64. Prove that D8n is not isomorphic to D4n × Z/2Z.

Exercise 5.65. Let F be a field. Let G be the following subgroup of Gln(F ):

G := {(aij) ∈ Gln(F ) : aij = 0 for i > j and a11 = a22 = . . . = ann}.
Let D be the following subgroup of Gln(F ):

D := {:= {(aij) ∈ Gln(F ) : aij = 0 for i 6= j and a11 = a22 = . . . = ann}.
Let U be the following subgroup of Gln(F ):

U := {:= {(aij) ∈ Gln(F ) : aij = 0 for i > j and a11 = a22 = . . . = ann = 1}.
Prove that G ∼= D × U .

Exercise 5.66. Give an example of a group G and normal subgroups H1, . . . ,Hn of G
satisfying G = H1 . . . Hn and satisfying Hi ∩Hj = {1} for every i 6= j, for which G is not
isomorphic to H1 × . . .×Hn.

In the following exercises we let H and K be groups, we let ρ : K → Aut(H) be a
homomorphism and we set G := H oρ K.

Exercise 5.67. Prove that CG(H) ∩K = ker(ρ) and that CG(K) ∩H = NG(K) ∩H.

Exercise 5.68. Let H be abelian and consider the group G := H o Z/2Z defined in
Examples 5.25 (iv). Prove that every element of G\H has order 2. Prove that G is abelian
if and only if every non-trivial element of H has order 2.

Exercise 5.69. Assume that K is cyclic, and suppose given two homomorphisms ρ1, ρ2 :
K → Aut(H) that satisfy im(ρ1) = im(ρ2). Assume also that either K is finite, or both ρ1

and ρ2 are injective. Prove that H oρ1 K ∼= H oρ2 K.
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Exercise 5.70. For each of n = 10, 576, 1155, 42875, 2704, determine the number of iso-
morphism classes of abelian groups of order n.

Exercise 5.71. For each of n = 270, 9801, 320, 105, 44100, determine the possible sequences
of invariant factors of an abelian group of order n. Determine also the possible sequences
of elementary divisors of an abelian group of order n.

Exercise 5.72. In each of the following lists of isomorphism classes of abelian groups,
determine how many of the given classes are distinct.

(i) C4 × C9, C6 × C6, C8 × C3, C9 × C4, C6 × C4, C64.
(ii) C4 × C18, C12 × C6, C72, C36 × C2.

(iii) C52·72 × C32·5·7, C32·52·7 × C5·72 , C3·52 × C72 × C3·5·7, C52·7 × C32·5·72 .
(iv) C225̇·7×C23·53×C2·52 , C23·53·7×C23·53 , C22×C2·7×C23×C53×C53 , C2·53×C22·53×

C23 × C7.

Exercise 5.73. Find a finite group G that has no element of order e(G).

Exercise 5.74. Let p be a prime number and let G be a group with isomorphism class

Cpa1 × Cpa2 × . . .× Cpan
for natural numbers n and a1, . . . , an. Define the p-th power map

fp : G→ G

by setting fp(g) := gp.

(i) Prove that fp is a homomorphism.
(ii) Prove that

ker(fp) ∼= Epn ∼= G/ im(fp).

Exercise 5.75. Let G be a finite abelian group and let p be a prime. We set

Gp := {gp : g ∈ G} and Gp := {g ∈ G : gp = 1}.
(i) Prove that G/Gp ∼= Gp.
(ii) Prove that the number of subgroups of G that have order p is equal to the number

of subgroups of G that have order p.

Exercise 5.76. Let G be a group with isomorphism class C60×C45×C12×C36. Find the
number of elements of G that have order 2 and the number of subgroups of G that have
index 2 in G.

Exercise 5.77. Let Ω be a finite set of cardinality n ∈ N. Let (P(Ω), ?) be the abelian
group considered in Exercise 1.85. Determine the sequence of invariant factors of this group.

Exercise 5.78. Show that S9 does not contain an abelian subgroup of order 21.

Exercise 5.79. Prove that the groups D16, D8×Z/2Z, Q8×Z/2Z and Z/4ZoZ/4Z, with
the semidirect product as in Examples 5.25 (v), are pairwise non-isomorphic.
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