4.1. Matrix Operations

$$
A=\left[\begin{array}{cccccc}
a_{11} & a_{12} & \ldots & a_{1 j} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 j} & \ldots & a_{2 n} \\
\vdots & \vdots & & & & \vdots \\
a_{i 1} & a_{i 2} & \ldots & a_{i j} & \ldots & a_{i n} \\
\vdots & \vdots & & & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m j} & \ldots & a_{m n}
\end{array}\right]
$$

- The entry in the i th row and the j th column of a matrix A is refered to as $(A)_{i j}$.

EXAMPLE:

- A zero matrix is a matrix, written 0 , whose entries are all zero.
- A square matrix has the same number of rows than columns.
- In general $(m \neq n)$, matrices are rectangular.
- The (main) diagonal of a matrix, or its diagonal entries, are the entries
- A diagonal matrix has all its nondiagonal entries equal to zero.

$$
\left[\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & -1 \\
-1 & 0 & 0
\end{array}\right] \quad\left[\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right] \quad\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- A matrix is upper triangular if all its elements under the diagonal are zero
- A matrix is lower triangular if all its elements over the diagonal are zero
- The set of all possible matrices of dimension $(m \times n)$ whose entries are real numbers is refered to as $\mathbb{R}^{m \times n}$
- The set of all possible matrices of dimension ($m \times n$) whose entries are complex numbers is refered to as $\mathbb{C}^{m \times n}$

$$
\left[\begin{array}{rrr}
0 & 1 & 0 \\
0 & 1 & -1 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{rrrr}
2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & 4
\end{array}\right] \quad\left[\begin{array}{rr}
2 & 2 \\
7 & 1 \\
3 & -3
\end{array}\right] \in \mathbb{K}^{3 \times 2}
$$

- OPERATIONS:

Only for matrices with the same dimensions:

- Equality. Two matrices are equal if and only if their corresponding entries are equal.

$$
\left[\begin{array}{rr}
3 & -1 \\
1 & 0
\end{array}\right] \neq[\neq[\square
$$

- Addition. A matrix whose entries are the sum of the corresponding entries of the matrices.

$$
\left[\begin{array}{rr}
0 & -1 \\
1 & 0 \\
2 & 0
\end{array}\right]+\left[\begin{array}{rr}
1 & -1 \\
-1 & 0 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{l}
\\
\end{array}\right]
$$

- Scalar Multiplication. A matrix whose entries are the corresponding entries of the matrix multiplied by the scalar.

$$
2\left[\begin{array}{rr}
0 & -1 \\
1 & 0 \\
2 & 0
\end{array}\right]=[\square
$$

- PROPERTIES:

Let A, B and C be matrices of $\mathbb{K}^{m \times n}$ and $\lambda, \mu \in \mathbb{K}$:

- $A+B=B+A$
- $\lambda(A+B)=\lambda A+\lambda B$
- $A+(B+C)=(A+B)+C$
- $(\lambda+\mu) A=\lambda A+\mu A$
- $A+0=A$
- $\lambda(\mu A)=(\lambda \mu) A$

Matrix Multiplication

\mathbb{K}^{m}

One wonders:
Does C exist $\quad \mid \quad C \mathbf{x}=A B \mathbf{x} \quad \forall \mathbf{x} \in \mathbb{K}^{p}$?
PROBLEM: What dimensions would C have?

If we write $B=\left[\begin{array}{llll}\mathbf{b}_{1} & \mathbf{b}_{2} & \ldots & \mathbf{b}_{p}\end{array}\right]$ and $\mathbf{x}=\left[\begin{array}{c}x_{1} \\ \vdots \\ x_{p}\end{array}\right]$, then:

$$
\begin{aligned}
B \mathbf{x} & =x_{1} \mathbf{b}_{1}+x_{2} \mathbf{b}_{2}+\cdots+x_{p} \mathbf{b}_{p} \\
A(B \mathbf{x}) & = \\
& = \\
& = \\
& =
\end{aligned}
$$

- Let A be an $(m \times n)$ matrix and let B be an $(n \times p)$ matrix with columns $\mathbf{b}_{1}, \mathbf{b}_{2}, \ldots, \mathbf{b}_{p}$. The matrix product of A by B is the $(m \times p)$ matrix $A B$ whose columns are $A \mathbf{b}_{1}, A \mathbf{b}_{2}, \ldots, A \mathbf{b}_{p}$.

That is,

$$
A B=A\left[\mathbf{b}_{1} \mathbf{b}_{2} \ldots \mathbf{b}_{p}\right]=\left[A \mathbf{b}_{1} A \mathbf{b}_{2} \ldots A \mathbf{b}_{p}\right]
$$

Warning: The dimensions of the matrices involved in a product must verify

EXAMPLE:

$$
\begin{gathered}
{\left[\begin{array}{rr}
2 & 3 \\
1 & -5
\end{array}\right]\left[\begin{array}{rrr}
4 & 3 & 6 \\
1 & -2 & 3
\end{array}\right]=} \\
\left.=\left[\begin{array}{rr}
(& 3 \\
1 & -5
\end{array}\right][]\left[\begin{array}{rr}
2 & 3 \\
1 & -5
\end{array}\right][]\left[\begin{array}{rr}
2 & 3 \\
1 & -5
\end{array}\right][]\right]= \\
= \\
{[[][]=[}
\end{gathered}
$$

Row-Column Rule for computing $A B$
Consider $A \in \mathbb{K}^{m \times n}$, and $B=\left[\mathbf{b}_{1} \ldots \mathbf{b}_{p}\right] \in \mathbb{K}^{n \times p}$ such that $(A)_{i k}=a_{i k}$, and $(B)_{k j}=b_{k j}$.

$$
\begin{aligned}
& A B=\left[\begin{array}{lllll}
A \mathbf{b}_{1} & \cdots & A \mathbf{b}_{j} & \cdots & A \mathbf{b}_{p}
\end{array}\right] \\
& {\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
\vdots & & & \vdots \\
a_{i 1} & a_{i 2} & \ldots & a_{i n} \\
\vdots & & & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{n j}
\end{array}\right]=\left[\begin{array}{c}
\star_{1} \\
\vdots \\
\star_{i} \\
\vdots \\
\star_{m}
\end{array}\right] \longrightarrow(A B)_{i j}}
\end{aligned}
$$

That is,

$$
(A B)_{i j}=\left[\begin{array}{llll}
a_{i 1} & a_{i 2} & \ldots & a_{i n}
\end{array}\right]\left[\begin{array}{c}
b_{1 j} \\
b_{2 j} \\
\vdots \\
b_{n j}
\end{array}\right]=\sum_{k} a_{i k} b_{k j}
$$

EXAMPLE:

$$
\begin{aligned}
& {\left[\begin{array}{rr}
\hline 2 & 3 \\
1 & -5
\end{array}\right]\left[\begin{array}{rrr}
4 & 3 & 6 \\
1 & -2 & 3
\end{array}\right]=\left[\begin{array}{lll}
\star & \star & \\
\star & \star & \star
\end{array}\right]} \\
& \text { 1st row } \quad \text { 3rd column } \rightarrow(\mathbf{1}, \mathbf{3}) \text { entry } \\
& {\left[\begin{array}{ll}
2 & 3 \\
\hline 1 & -5
\end{array}\right]\left[\begin{array}{rrr}
4 & 3 & 6 \\
1 & -2 & 3
\end{array}\right]=\left[\begin{array}{lll}
\star & \star & \star \\
& \star
\end{array}\right]} \\
& \text { 2nd row } \quad \mathbf{1 s t} \text { column } \quad \rightarrow
\end{aligned} \begin{aligned}
& \mathbf{(2 , 1}) \text { entry }
\end{aligned}
$$

PROBLEM: Find the 2nd row of $A B$.

$$
A B=\left[\begin{array}{rrr}
2 & -5 & 0 \\
-1 & 3 & -4 \\
6 & -8 & -7 \\
-3 & 0 & 9
\end{array}\right]\left[\begin{array}{rr}
4 & -6 \\
7 & 1 \\
3 & 2
\end{array}\right]
$$

PROBLEM: Compute

$$
\left[\begin{array}{rrr}
1 & -1 & 2 \\
3 & 0 & 1
\end{array}\right]\left[\begin{array}{rr}
1 & 1 \\
2 & -1 \\
1 & 0
\end{array}\right]\left[\begin{array}{rrrr}
1 & -1 & 0 & 0 \\
0 & 0 & 1 & 1
\end{array}\right]
$$

- PROPERTIES:

Let A be an $(m \times n)$ matrix, and B and C matrices of appropriate dimensions:

- $A(B C)=(A B) C$
- $A(B+C)=A B+A C$
- $(B+C) A=B A+C A$
- $\mu(A B)=(\mu A) B=A(\mu B) \quad \forall \mu \in \mathbb{K}$
- $\mathbb{I}_{m} A=A=A \mathbb{I}_{n} \quad$ where \mathbb{I}_{k} is the $(k \times k)$ identity matrix

WARNING: In general, $A B \neq B A$

EXPANSION AXIS X
$B=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$
ROTATION 30°
$A=\frac{1}{2}\left[\begin{array}{cc}\sqrt{3} & -1 \\ 1 & \sqrt{3}\end{array}\right]$

1st EXPANSION + 2nd ROTATION

ROTATION 30°
$A=\frac{1}{2}\left[\begin{array}{cc}\sqrt{3} & -1 \\ 1 & \sqrt{3}\end{array}\right]$
EXPANSION AXIS X
$B=\left[\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right]$
$\frac{\text { 1st ROTATION }+2 \text { nd EXPANSION }}{B A=[\square}$

WARNING: In general, $A B=A C \quad \nRightarrow \quad B=C$

$$
\begin{aligned}
& \text { ROTATION } \pi / 2 \\
& B=\left[\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right]
\end{aligned}
$$

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

1st ROTATION + 2nd PROJECTION

1st REFLECTION + 2nd PROJECTION $A C=[\square$

WARNING: In general, $A B=0 \nRightarrow \quad A=0$ or $B=0$

PROJECTION in X

$B=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$
PROJECTION in Y
$A=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$

1st X-PROJECTION + 2nd Y-PROJECTION $A B=[\quad]$

WARNING: In general, $\quad A^{2}=0 \quad \nRightarrow \quad A=0$

$$
A=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right], \quad A=\left[\begin{array}{rr}
1 & 1 \\
-1 & -1
\end{array}\right] \quad \Rightarrow \quad A^{2}=[\square
$$

- If two square matrices verify that $A B=B A$, we say that A and B commute with each other.
- The k th power of a matrix is defined:

$$
A^{k}=\underbrace{A A A \cdots A}_{k \text { times }}
$$

This only makes sense if A is a \qquad matrix and k is a nonnegative integer.

- For convenience, we define $A^{0}=\mathbb{I}$.

PROBLEM: Compute

Transpose of a Matrix

- The transpose of an $(m \times n)$ matrix A is the $(n \times m)$ matrix A^{T} whose columns are the rows of A.

That is,

$$
\left(A^{T}\right)_{i j}=(A)_{j i}
$$

EXAMPLE:

$$
B=\left[\begin{array}{rrr}
-5 & 1 & 0 \\
2 & -3 & 4
\end{array}\right] \quad \Rightarrow \quad B^{T}=
$$

EXAMPLE:

- A symmetric matrix verifies $A^{T}=A$.
- An antisymmetric matrix verifies $A^{T}=-A$.

PROBLEM: Provide examples of (anti)symmetric matrices.

- PROPERTIES:

Let A and B be matrices of appropriate dimensions and $\mu \in \mathbb{K}$:

- $\left(A^{T}\right)^{T}=A$
- $(A+B)^{T}=A^{T}+B^{T}$
- $(\mu A)^{T}=\mu\left(A^{T}\right)$
- $(A B)^{T}=B^{T} A^{T}$

Proof: Let be $A \in \mathbb{K}^{m \times n}$ and $B \in \mathbb{K}^{n \times q}$

$$
\left((A B)^{T}\right)_{i j}=
$$

PROBLEM: Prove that $(A B C)^{T}=C^{T} B^{T} A^{T}$.

Conjugate Transpose of a Matrix

- The conjugate transpose of an $(m \times n)$ matrix A is the ($n \times m$) matrix A^{*}, or A^{H}, whose elements verify:

$$
\left(A^{*}\right)_{i j}=\overline{(A)_{j i}}
$$

EXAMPLE:

$$
\begin{aligned}
B= & {\left[\begin{array}{rr}
-5 & 2-i \\
i & 3 \\
0 & 4
\end{array}\right] \Rightarrow B^{*}=} \\
& A=\left[\begin{array}{llll}
\mathbf{a}_{1} & \mathbf{a}_{2} & \cdots & \mathbf{a}_{n}
\end{array}\right] \Rightarrow A^{*}=
\end{aligned}
$$

- PROPERTIES:

Let A and B be matrices of appropriate dimensions and $\mu \in \mathbb{K}$:

- $\left(A^{*}\right)^{*}=A$
- $(A+B)^{*}=A^{*}+B^{*}$
- $(\mu A)^{*}=\bar{\mu}\left(A^{*}\right)$
- $(A B)^{*}=B^{*} A^{*}$
- $A^{*}=A^{T}$ if and only if A is a real matrix.
- A Hermitian matrix verifies $A^{*}=A$.
- An antihermitian matrix verifies $A^{*}=-A$.

PROBLEM: Provide examples of (anti)Hermitian matrices.

4.2. Inverse of a Matrix

- A square $(n \times n)$ matrix A is invertible, or nonsingular, if there exists a matrix B such that

$$
A B=\mathbb{I}_{n}
$$

- A noninvertible or singular matrix has no inverse.

EXAMPLE: This matrix is invertible: $A=\left[\begin{array}{rr}2 & 5 \\ -3 & -7\end{array}\right]$ Because $C=\left[\begin{array}{rr}-7 & -5 \\ 3 & 2\end{array}\right]$ verifies $A C=\left[\begin{array}{rr}2 & 5 \\ -3 & -7\end{array}\right]\left[\begin{array}{rr}-7 & -5 \\ 3 & 2\end{array}\right]=[\quad]$

EXAMPLE: This matrix is invertible: $A=\left[\begin{array}{rr}\cos \phi & -\sin \phi \\ \sin \phi & \cos \phi\end{array}\right]$

$$
A=\square \quad \Rightarrow \quad A^{-1}=\square
$$

Thus, $A^{-1}=[$

$$
]=[
$$

$$
]
$$

EXAMPLE: Matrix B has no inverse and is, therefore, a singular matrix:

$$
B=\square=[
$$

Theorem 4.1. If A is an invertible $(n \times n)$ matrix, then the equation $A \mathbf{x}=\mathbf{b}$ has the unique solution $\mathbf{x}=A^{-1} \mathbf{b}, \quad \forall \mathbf{b} \in \mathbb{K}^{n}$.

Proof:

- That $\mathbf{x}=A^{-1} \mathbf{b}$ is a solution $\forall \mathbf{b}$ can be checked by a mere substitution:
- As it has a solution $\forall \mathbf{b} \Rightarrow A$ must have a pivot in every row.
A square
\Rightarrow
No free variables

$$
\Rightarrow
$$

Warning:

Theorem 4.2. Let A and B be $(n \times n)$ matrices. Then:

$$
A B=\mathbb{I} \quad \Leftrightarrow \quad B A=\mathbb{I}
$$

Proof: $\quad(A B=\mathbb{I} \Rightarrow B A=\mathbb{I})$

- Suppose that $B A=X$
- Let's define $M=\mathbb{I}-X=\left[\begin{array}{llll}\mathbf{m}_{1} & \mathbf{m}_{2} & \cdots & \mathbf{m}_{n}\end{array}\right]$.

As
That is,

- But now,

Leading to

Theorem 4.3. If A is an invertible matrix, then A^{-1} is invertible and $\quad\left(A^{-1}\right)^{-1}=A$.

Proof:

Theorem 4.4. If exists, the inverse of a matrix is unique.

Proof: Let A be an invertible matrix, and B a matrix such that $A B=\mathbb{I}$ (that is, $B=A^{-1}$). Suppose there exists C such that $A C=\mathbb{I}$ (in other words, suppose that A has another inverse).

Theorem 4.5. If A is invertible, A^{T} is also invertible and $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$.

Theorem 4.6. If A is invertible, A^{*} is also invertible and $\left(A^{*}\right)^{-1}=\left(A^{-1}\right)^{*}$.

Proof:

EXAMPLE:

$$
\left[\begin{array}{cc}
1+i & 1+2 i \\
-1 & -1-i
\end{array}\right]\left[\begin{array}{cc}
-1-i & -1-2 i \\
1 & 1+i
\end{array}\right]=[
$$

then, $\left[\begin{array}{cc}-1+i & 1 \\ -1+2 i & 1-i\end{array}\right]^{-1}=[$

Theorem 4.7. If A and B are invertible $(n \times n)$ matrices, then $A B$ is invertible and $\quad(A B)^{-1}=B^{-1} A^{-1}$.

Proof:

EXAMPLE: Consider the linear transformations:

$$
A=\text { ROTATE } \quad B=\text { EXPAND. }
$$

Then,

$$
A B=\square=\square
$$

(in this order!) and the inverse is

$$
(A B)^{-1}=\square=\square^{-1} \square^{-1}
$$

\square

PROBLEM: If A, B and C are nonsingular matrices of equal size, show that $(A B C)^{-1}=C^{-1} B^{-1} A^{-1}$.

- An elementary matrix is one that is obtained by performing one elementary row operation on an identity matrix.

EXAMPLE:

$$
E_{1}=\begin{aligned}
& \square \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right]}
\end{aligned} \quad E_{2}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right] \quad E_{3}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Notice: These matrices have a clear geometrical interpretation. They correspond to

Theorem 4.8. If an elementary row operation if performed on an ($m \times n$) matrix A, the resulting matrix can be written as $E A$, where E is the $(m \times m)$ elementary matrix created by performing the same operation on \mathbb{I}_{m}.

EXAMPLE: Consider the (3×2) matrix $\quad A=\left[\begin{array}{ll}a & d \\ b & e \\ c & f\end{array}\right]$

- $\mathbb{I} \sim E_{1} \quad\left(r_{3} \rightarrow 5 r_{3}\right)$

$$
E_{1} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right]\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right]=[\square
$$

- $\mathbb{I} \sim E_{2} \quad\left(r_{2} \leftrightarrow r_{3}\right)$

$$
E_{2} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right]=[]
$$

- $\mathbb{I} \sim E_{3} \quad\left(r_{2} \rightarrow r_{2}-4 r_{1}\right)$

$$
E_{3} A=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
a & d \\
b & e \\
c & f
\end{array}\right]=[\square
$$

Theorem 4.9. Every elementary matrix E is invertible and its inverse E^{-1} is the elementary matrix corresponding to the row operation that transforms E back into \mathbb{I}.

EXAMPLE: The matrix E_{1} multiplies the 3rd row by five:

$$
E_{1}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 5
\end{array}\right]
$$

Its inverse E_{1}^{-1} is the matrix that divides the 3 rd row by five:

$$
E_{1}^{-1}=[\square]
$$

Check: $\quad E_{1} E_{1}^{-1}=\cdots=\mathbb{I}$

Theorem 4.10. An $(n \times n)$ matrix A is invertible if and only if A is row equivalent to \mathbb{I}_{n}. In this case, any sequence of elementary row operations that transforms A into \mathbb{I}_{n} also transforms \mathbb{I}_{n} in A^{-1}.

Proof:

A invertible \Leftrightarrow
\Rightarrow
Then, $\quad A^{-1}=E_{p} E_{p-1} \ldots E_{2} E_{1} \quad$ and, in fact,

An Algorithm for finding A^{-1}

- Construct the matrix $[A \mathbb{I}]$
- Find its reduced echelon form.
- If this matrix has the form $[\mathbb{I} B]$, then $A^{-1}=B$. Otherwise, A does not have an inverse.

EXAMPLE:

$$
\left[\begin{array}{cccccc}
0 & 1 & 2 & 1 & 0 & 0 \\
1 & 0 & 3 & 0 & 1 & 0 \\
4 & -3 & 8 & 0 & 0 & 1
\end{array}\right] \sim \underbrace{\left[\begin{array}{llllll}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 2 & 1 & 0 & 0 \\
4 & -3 & 8 & 0 & 0 & 1
\end{array}\right]} \sim \underbrace{\underbrace{-} \sim(\underbrace{2}} \sim
$$

$A \quad \mathbb{I}$

$$
\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 0 & -2 & 4 & -1 \\
0 & 0 & 2 & 3 & -4 & 1
\end{array}\right] \sim\left[\begin{array}{rrrrrr}
1 & 0 & 3 & 0 & 1 & 0 \\
0 & 1 & 0 & -2 & 4 & -1 \\
0 & 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2}
\end{array}\right] \sim
$$

$$
\left[\begin{array}{rrrrrr}
1 & 0 & 0 & -\frac{9}{2} & 7 & -\frac{3}{2} \\
0 & 1 & 0 & -2 & 4 & -1 \\
0 & 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2}
\end{array}\right] \Rightarrow A^{-1}=[\square
$$

PROBLEM: If exists, find the inverse of the matrix

$$
C=\left[\begin{array}{rrr}
1 & 0 & -2 \\
3 & 1 & -2 \\
-5 & -1 & 9
\end{array}\right]
$$

Check: $\quad C C^{-1}=$

Theorem 4.11.

If $A \in \mathbb{K}^{n \times n}$, the following statements are equivalent:

1. A is an invertible matrix.
2. There exists $C \in \mathbb{K}^{n \times n}$ such that $A C=\mathbb{I}_{n}$.
3. There exists $D \in \mathbb{K}^{n \times n}$ such that $D A=\mathbb{I}_{n}$.
4. A is row equivalent to \mathbb{I}_{n}.
5. A has n pivots.
6. The equation $A \mathrm{x}=\mathbf{0}$ has only the trivial solution.
7. The columns/rows of A are linearly independent.
8. The equation $A \mathbf{x}=\mathbf{b}$ has a (unique) solution $\forall \mathbf{b} \in \mathbb{K}^{n}$.
9. The columns/rows of A span \mathbb{K}^{n}.
10. The columns/rows of A form a basis of \mathbb{K}^{n}
11. A^{T} is invertible.
12. A^{*} is invertible.
13. The linear transformation $\mathrm{x} \rightarrow A \mathrm{x}$ is bijective.
14. $\operatorname{Col} A=$ Row $A=\mathbb{K}^{n}$
15. $\operatorname{dim} \operatorname{Col} A=\operatorname{dim} \operatorname{Row} A=n$
16. rank $A=n$
17. $\operatorname{Nul} A=\{\mathbf{0}\}$
18. $\operatorname{dim} \operatorname{Nul} A=0$

- A transformation $T: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ is called invertible if there exists a transformation $S: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ such that

$$
\left.\begin{array}{l}
S(T(\mathbf{x}))=\mathbf{x} \\
T(S(\mathbf{x}))=\mathbf{x}
\end{array}\right\} \quad \forall \mathbf{x} \in \mathbb{K}^{n}
$$

The transformation S is called the inverse of T.

Theorem 4.12. Let $T: \mathbb{K}^{n} \longrightarrow \mathbb{K}^{n}$ be a linear transformation and A its canonical matrix. T is invertible if and only if A is nonsingular. In this case, $S(\mathbf{x})=A^{-1} \mathbf{x}$.

4.3. Partitioned (or Block) Matrices

EXAMPLE:

$$
A=\left[\begin{array}{rrr|rr|r}
3 & 0 & -1 & 5 & 9 & -2 \\
-5 & 2 & 4 & 0 & -3 & 1 \\
\hline-8 & -6 & 3 & 1 & 7 & -4
\end{array}\right]
$$

where

$$
\begin{aligned}
& A_{11}=[\quad], A_{12}=[\quad], A_{13}=[\\
& A_{21}=[\quad], A_{22}=[\quad], A_{23}=[
\end{aligned}
$$

EXAMPLE: Social web of 6 persons in 3 groups

Adjacency Matrix

$$
M=\left[\begin{array}{ll|lll|l}
0 & 1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
\hline 1 & 1 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 \\
\hline 0 & 0 & 1 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{lll}
M_{11} & M_{12} & M_{13} \\
M_{21} & M_{22} & M_{23} \\
M_{31} & M_{32} & M_{33}
\end{array}\right]
$$

EXAMPLE: Jefferson High School

EXAMPLE: Trade share matrix between countries

PRL 105, 198701 (2010) PHYSICAL REVIEW

- PROPERTIES:

- Addition: Matrices of equal size and identical partition can be summed block by block:

$$
\begin{aligned}
A+B & =\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right]+\left[\begin{array}{lll}
B_{11} & B_{12} & B_{13} \\
B_{21} & B_{22} & B_{23}
\end{array}\right] \\
& =[
\end{aligned}
$$

- Scalar Multiplication:

$$
\lambda A=\lambda\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right]=[
$$

- Transpose of a matrix:

$$
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right] \Rightarrow A^{T}=\left[\begin{array}{cc}
A_{11}^{T} & A_{21}^{T} \\
A_{12}^{T} & A_{22}^{T} \\
A_{13}^{T} & A_{23}^{T}
\end{array}\right] \neq[
$$

Conjugate transpose of a matrix:

$$
A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23}
\end{array}\right] \Rightarrow A^{*}=\left[\begin{array}{ll}
A_{11}^{*} & A_{21}^{*} \\
A_{12}^{*} & A_{22}^{*} \\
A_{13}^{*} & A_{23}^{*}
\end{array}\right]
$$

EXAMPLE:

$$
A=\left[\begin{array}{rr|r}
2 & 0 & 8 \\
1 & -5 & 3 \\
\hline 0-2 & 7
\end{array}\right] \Rightarrow A^{T}=\left[\begin{array}{rr|r}
2 & 1 & 0 \\
0 & -5 & -2 \\
\hline 8 & 3 & 7
\end{array}\right]
$$

- Multiplication of partitioned matrices: Two matrices A and B of respective dimensions $(m \times n)$ and $(n \times p)$ are conformable for block multiplication when the number of columns of each partition of A is equal to the number of rows of the corresponding partition of B.

$$
\begin{align*}
& A B=\left[\begin{array}{rrr|r}
2 & -3 & 1 & 0-4 \\
1 & 5 & -2 & 3-1 \\
\hline 0 & -4 & -2 & 7-1
\end{array}\right]\left[\begin{array}{rr}
6 & 4 \\
-2 & 1 \\
-3 & 7 \\
\hline-1 & 3 \\
5 & 2
\end{array}\right] \\
&=\left[\begin{array}{ll}
A_{11} & A_{12} \\
A_{21} & A_{22}
\end{array}\right]\left[\begin{array}{l}
B_{11} \\
B_{21}
\end{array}\right]=[
\end{align*}
$$

(Attention:

Concentrate on the dimensions of the blocks:

$$
\begin{aligned}
& {[(3 \times 5)][(5 \times 2)]=\left[\begin{array}{ll}
(2 \times 3)(&) \\
(&)
\end{array} \quad\right)\left[\begin{array}{ll}
(&) \\
(&)
\end{array}\right]=}
\end{aligned}
$$

EXAMPLE: Let A be a block upper triangular matrix:

$$
A=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right] .
$$

Assuming that A is invertible, A_{11} is $(p \times p)$ and A_{22} is $(q \times q)$, find a formula for A^{-1}.

Call $B=A^{-1}$. Partition B in such a way that we can write:

$$
A B=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right]\left[\begin{array}{ll}
B_{11} & B_{12} \\
B_{21} & B_{22}
\end{array}\right]=\left[\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right] .
$$

The dimensions of the matrices involved are:

$$
\left[\begin{array}{l}
(p \times p)(r) \\
(\quad)(q \times q)
\end{array}\right]\left[\begin{array}{ll}
(\quad)(&) \\
(&)(
\end{array}\right)=\left[\begin{array}{ll}
\left(\begin{array}{ll}
(&)
\end{array}\right] \\
(&)(
\end{array}\right)
$$

The equation can be written:

$$
[\quad]=\left[\begin{array}{ll}
\mathbb{I} & 0 \\
0 & \mathbb{I}
\end{array}\right] .
$$

Equating components, we obtain:

(a)	$=\mathbb{I}$
(b)	$=0$
(c)	$=0$
(d)	$=\mathbb{I}$

We have to solve 4 matrix equations, which represent a linear system of $(p+q)^{2}$ equations with $(p+q)^{2}$ unknowns.

- (d)
- (c)
- (a)
- (b)

Obtaining,

$$
A^{-1}=[\quad]
$$

Theorem 4.13. A block diagonal matrix is invertible if and only if each of the diagonal blocks is invertible.

Proof: The case of two blocks follows from the above result when $A_{12}=0$.
$\left[\begin{array}{c|c|c|c}C_{11} & 0 & \cdots & 0 \\ \hline 0 & C_{22} & & 0 \\ \hline \vdots & & \ddots & \\ \hline 0 & 0 & & C_{n n}\end{array}\right]^{-1}=$
$=\left[\begin{array}{c|c|c|c} & 0 & \cdots & 0 \\ \hline 0 & & & 0 \\ \hline \vdots & & \ddots & \\ \hline 0 & 0 & & \end{array}\right]$

Theorem 4.14. A diagonal matrix is invertible if and only if none of its diagonal elements is zero.

$$
\left[\begin{array}{cccc}
a_{11} & 0 & \ldots & 0 \\
0 & a_{22} & & 0 \\
\vdots & & \ddots & \\
0 & 0 & & a_{n n}
\end{array}\right]^{-1}=[
$$

PROBLEM: Determine under what conditions the following matrix is invertible and, in that case, find its inverse:

$$
\left[\begin{array}{cc}
\mathbb{I}_{m} & 0 \\
A & \mathbb{I}_{n}
\end{array}\right]
$$

4.4. Determinants

- Given an $(m \times n)$ matrix A, we define the minor $A_{i j}$ as the $((m-1) \times(n-1))$ matrix obtained by removing the i th row and the j th column of the matrix A.

EXAMPLE:

$$
A=\left[\begin{array}{rrr}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right]
$$

- Let A be an $(n \times n)$ matrix whose entry $(A)_{i j}=a_{i j}$.

We define the determinant of A as

$$
\operatorname{det} A=|A|=\sum_{j=1}^{n}(-1)^{j+1} a_{1 j} \operatorname{det} A_{1 j}=\sum_{j=1}^{n} a_{1 j} C_{1 j}
$$

where $C_{i j}=(-1)^{i+j} \operatorname{det} A_{i j}$ is refered to as the $i j$ cofactor of A.

Theorem 4.15. The determinant of a square matrix A can be expressed as the cofactor expansion along any row of the matrix

$$
\operatorname{det} A=\sum_{j=1}^{n}(-1)^{k+j} a_{k j} \operatorname{det} A_{k j}=\sum_{j=1}^{n} a_{k j} C_{k j}\binom{\text { along the }}{k \text { th row }}
$$

WARNING:

0

0

Algebra 2017/2018

EXAMPLE:

$$
\operatorname{det}\left[\begin{array}{rrr}
1 & 5 & 0 \\
2 & 4 & -1 \\
0 & -2 & 0
\end{array}\right]
$$

1st row:
$=$

2nd row:

$=$

Theorem 4.16. If A is an $(n \times n)$ triangular matrix, its determinant is the product of its diagonal entries.

$$
\operatorname{det}\left[\begin{array}{ccccc}
a_{11} & 0 & 0 & 0 & 0 \\
\star & a_{22} & 0 & 0 & 0 \\
\star & \star & a_{33} & 0 & 0 \\
\star & \star & \star & a_{44} & 0 \\
\star & \star & \star & \star & a_{55}
\end{array}\right]=
$$

Theorem 4.17. Let A be an $(n \times n)$ matrix.
If we obtain a matrix B,

- By adding to a row of A the multiple of another row, $\operatorname{det} B=\operatorname{det} A$.
- By multiplying one row of A by λ, $\operatorname{det} B=\lambda \operatorname{det} A$.
- By interchanging two rows of A,

$$
\operatorname{det} B=-\operatorname{det} A \text {. }
$$

EXAMPLE:

$$
\left|\begin{array}{rrr}
-3 & 3 & -3 \\
-2 & 2 & -1 \\
1 & 0 & 1
\end{array}\right|=|=|=|=|=
$$

Theorem 4.18. Let A be a square matrix and U an echelon matrix obtained from A by adding multiples of rows and r row interchanges (but without multiplying any row by a scalar!). Then,

$$
\operatorname{det} A=\left\{\begin{array}{cl}
0 & \text { if } A \text { is not invertible } \\
(-1)^{r} \cdot\binom{\text { product of }}{\text { the pivots }} & \text { if } A \text { is invertible }
\end{array}\right.
$$

Proof:

Note: This would add a new statement to theorem 4.11:
19. The determinant of A is nonzero.

WARNING: In general,

$$
A \sim B \quad \nRightarrow \quad \operatorname{det} A=\operatorname{det} B
$$

Check theorem 4.17!

WARNING: In general,

$$
\operatorname{det}(A+B) \neq \operatorname{det} A+\operatorname{det} B
$$

EXAMPLE: If it was true, all determinants would be zero:

$$
\operatorname{det}\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\operatorname{det}\left(\left[\begin{array}{ll}
a & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & b \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
c & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & d
\end{array}\right]\right)
$$

Theorem 4.19. If A and B are square matrices,

$$
\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B .
$$

Theorem 4.20. If A is a square matrix,

$$
\left|A^{T}\right|=|A| \quad \text { and } \quad\left|A^{*}\right|=\overline{|A|}
$$

Proof:

- For elementary matrices, it's easy to see that $|E|=\left|E^{T}\right|$.
- If we obtain an echelon form of a matrix A:

Leading to

- Now, as U is a triangular matrix, $\left|U^{T}\right|=|U|$ and, consequently

