Chapter 4 - MATRIX ALGEBRA

4.1. Matrix Operations

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2j} & \dots & a_{2n} \\ \vdots & \vdots & & & \vdots \\ a_{i1} & a_{i2} & \dots & \boxed{a_{ij}} & \dots & a_{in} \\ \vdots & \vdots & & & \vdots \\ a_{m1} & a_{m2} & \dots & a_{mj} & \dots & a_{mn} \end{bmatrix}$$

• The entry in the *i*th row and the *j*th column of a matrix A is referred to as $(A)_{ij}$.

EXAMPLE:

Algebra 2017/2018 4-1

- A **zero matrix** is a matrix, written 0, whose entries are all zero.
- A **square** matrix has the same number of rows than columns.
 - In general $(m \neq n)$, matrices are **rectangular**.
- The (main) diagonal of a matrix, or its diagonal entries, are the entries
- A diagonal matrix has all its nondiagonal entries equal to zero.

$$\begin{bmatrix} 0 & 1 & 0 \\ 1 & 0 - 1 \\ -1 & 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 0 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \qquad \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 - 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

- A matrix is **upper triangular** if all its elements under the diagonal are zero
- A matrix is **lower triangular** if all its elements over the diagonal are zero
- The set of all possible matrices of dimension $(m \times n)$ whose entries are real numbers is referred to as $\mathbb{R}^{m \times n}$
- The set of all possible matrices of dimension $(m \times n)$ whose entries are complex numbers is referred to as $\mathbb{C}^{m \times n}$

$$\begin{bmatrix} 0 & 1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & -1 \end{bmatrix} \quad \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & 4 \end{bmatrix} \quad \begin{bmatrix} 2 & 2 \\ 7 & 1 \\ 3 & -3 \end{bmatrix} \in \mathbb{K}^{3 \times 2}$$

Algebra 2017/2018 4-3

• OPERATIONS:

Only for matrices with the <u>same dimensions</u>:

 Equality. Two matrices are equal if and only if their corresponding entries are equal.

$$\left[\begin{array}{cc} 3 & -1 \\ 1 & 0 \end{array}\right] \neq \left[\begin{array}{cc} & & \\ & & \end{array}\right]$$

 Addition. A matrix whose entries are the sum of the corresponding entries of the matrices.

$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 2 & 0 \end{bmatrix} + \begin{bmatrix} 1 & -1 \\ -1 & 0 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

o Scalar Multiplication. A matrix whose entries are the corresponding entries of the matrix multiplied by the scalar.

$$2\begin{bmatrix} 0 & -1 \\ 1 & 0 \\ 2 & 0 \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

PROPERTIES:

Let A, B and C be matrices of $\mathbb{K}^{m \times n}$ and λ , $\mu \in \mathbb{K}$:

$$\circ A + B = B + A$$

$$\circ \lambda (A+B) = \lambda A + \lambda B$$

$$\circ A + (B+C) = (A+B) + C \qquad \circ (\lambda + \mu) A = \lambda A + \mu A$$

$$\circ (\lambda + \mu) A = \lambda A + \mu A$$

$$\circ A + 0 = A$$

$$\circ \lambda (\mu A) = (\lambda \mu) A$$

Algebra 2017/2018 4-5

Matrix Multiplication

$$\mathbb{K}^m$$

One wonders:

Does
$$C$$
 exist $\mid C \mathbf{x} = A B \mathbf{x} \quad \forall \mathbf{x} \in \mathbb{K}^p$?

PROBLEM: What dimensions would C have?

If we write
$$B=[\ \mathbf{b}_1\ \mathbf{b}_2\ \dots\ \mathbf{b}_p\]$$
 and $\mathbf{x}=\begin{bmatrix}x_1\\ \vdots\\ x_p\end{bmatrix}$, then:

Algebra 2017/2018 4-7

• Let A be an $(m \times n)$ matrix and let B be an $(n \times p)$ matrix with columns $\mathbf{b}_1, \mathbf{b}_2, \ldots, \mathbf{b}_p$. The **matrix product** of A by B is the $(m \times p)$ matrix AB whose columns are $A\mathbf{b}_1, A\mathbf{b}_2, \ldots, A\mathbf{b}_p$.

That is,

$$AB = A [\mathbf{b}_1 \mathbf{b}_2 \dots \mathbf{b}_p] = [A\mathbf{b}_1 A\mathbf{b}_2 \dots A\mathbf{b}_p]$$

Warning: The dimensions of the matrices involved in a product must verify

EXAMPLE:

$$\begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix} =$$

$$()) ()) \Rightarrow ()$$

$$= \begin{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \end{bmatrix} \begin{bmatrix} \begin{bmatrix} 2 & 3 \\ 1 & -5 \end{bmatrix} \end{bmatrix} \begin{bmatrix} \end{bmatrix} =$$

$$= \begin{bmatrix} \begin{bmatrix} \end{bmatrix} \end{bmatrix} \begin{bmatrix} \end{bmatrix} \begin{bmatrix} \end{bmatrix} \begin{bmatrix} \end{bmatrix} \begin{bmatrix} \end{bmatrix} = \begin{bmatrix} \end{bmatrix}$$

Algebra 2017/2018 4-9

Row-Column Rule for computing AB

Consider $A \in \mathbb{K}^{m \times n}$, and $B = [\mathbf{b}_1 \dots \mathbf{b}_p] \in \mathbb{K}^{n \times p}$ such that $(A)_{ik} = a_{ik}$, and $(B)_{kj} = b_{kj}$.

$$AB = \begin{bmatrix} A\mathbf{b}_1 & \cdots & A\mathbf{b}_j & \cdots & A\mathbf{b}_p \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & & \vdots & & \vdots \\ a_{i1} & a_{i2} & \cdots & a_{in} \\ \vdots & & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = \begin{bmatrix} \star_1 \\ \vdots \\ \star_i \\ \vdots \\ \star_m \end{bmatrix} \longrightarrow (AB)_{ij}$$

That is,

$$(AB)_{ij} = \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{in} \end{bmatrix} \begin{bmatrix} b_{1j} \\ b_{2j} \\ \vdots \\ b_{nj} \end{bmatrix} = \sum_{k} a_{ik} b_{kj}$$

EXAMPLE:

$$\begin{bmatrix}
2 & 3 \\
1 & -5
\end{bmatrix}
\begin{bmatrix}
4 & 3 & 6 \\
1 & -2 & 3
\end{bmatrix} = \begin{bmatrix}
\star & \star \\
\star & \star
\end{bmatrix}$$

1st row **3**rd column \rightarrow **(1, 3)** entry

$$\begin{bmatrix} 2 & 3 \\ \hline 1 & -5 \end{bmatrix} \begin{bmatrix} 4 & 3 & 6 \\ 1 & -2 & 3 \end{bmatrix} = \begin{bmatrix} & \star & \star & \star \\ & \star & \star \end{bmatrix}$$

2nd row 1st column \rightarrow (2, 1) entry

Algebra 2017/2018 4-11

PROBLEM: Find the 2nd row of AB.

$$AB = \begin{bmatrix} 2 & -5 & 0 \\ -1 & 3 & -4 \\ 6 & -8 & -7 \\ -3 & 0 & 9 \end{bmatrix} \begin{bmatrix} 4 & -6 \\ 7 & 1 \\ 3 & 2 \end{bmatrix}$$

PROBLEM: Compute

$$\left[\begin{array}{ccc} 1 - 1 & 2 \\ 3 & 0 & 1 \end{array}\right] \left[\begin{array}{cccc} 1 & 1 \\ 2 & -1 \\ 1 & 0 \end{array}\right] \left[\begin{array}{ccccc} 1 - 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{array}\right]$$

Algebra 2017/2018

4-12

• PROPERTIES:

Let A be an $(m \times n)$ matrix, and B and C matrices of appropriate dimensions:

$$\circ A(BC) = (AB)C$$

$$\circ A(B+C) = AB + AC$$

$$\circ (B+C)A = BA + CA$$

$$\circ \ \mu (AB) = (\mu A) B = A (\mu B) \qquad \forall \ \mu \in \mathbb{K}$$

$$\circ \ \mathbb{I}_m \, A = A = A \, \mathbb{I}_n \quad$$
 where \mathbb{I}_k is the $(k imes k)$ identity matrix

 \rightarrow 4.3

Algebra 2017/2018 4-13

WARNING: In general, $AB \neq BA$

EXPANSION AXIS X ROTATION 30°

$$\begin{bmatrix} 2 & 0 & 1 \\ & & 1 & \sqrt{3} & -1 \end{bmatrix}$$

$$B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix} \qquad A = \frac{1}{2} \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix}$$

$$AB =$$

ROTATION 30° EXPANSION AXIS X
$$A = \frac{1}{2} \begin{bmatrix} \sqrt{3} & -1 \\ 1 & \sqrt{3} \end{bmatrix} \qquad B = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

$$AA = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

WARNING: In general,
$$AB = AC \implies B = C$$

ROTATION
$$\pi/2$$
 PROJECTION in X 1st ROTATION + 2nd PROJE $B = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$ $A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ $AB = \begin{bmatrix} \end{bmatrix}$

$$1 \text{st ROTATION} + 2 \text{nd PROJECTION}$$

$$AB = \begin{bmatrix} & & \\ & & \end{bmatrix}$$

REFLECTION
$$x+y=0$$
 PROJECTION in X
$$C = \begin{bmatrix} 0 & -1 \\ -1 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

Algebra 2017/2018 4-15

WARNING: In general,
$$AB=0$$
 \Rightarrow $A=0$ or $B=0$

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \qquad A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$$

PROJECTION in X
 PROJECTION in Y
 1st X-PROJECTION + 2nd Y-PROJECTION

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$
 $A = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$
 $AB = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$

WARNING: In general, $A^2 = 0 \implies A = 0$

$$A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix} \qquad \Rightarrow \qquad A^2 = \begin{bmatrix} 1 & 1 \\ -1 & -1 \end{bmatrix}$$

ullet If two square matrices verify that AB=BA, we say that A and B **commute** with each other.

• The kth **power** of a matrix is defined:

$$A^k = \underbrace{A A A \cdots A}_{k \text{ times}}$$

This only makes sense if A is a _____ matrix and k is a nonnegative integer.

ullet For convenience, we define $A^0=\mathbb{I}$.

PROBLEM: Compute

 \rightarrow 4.4

Algebra 2017/2018 4-17

Transpose of a Matrix

• The **transpose** of an $(m \times n)$ matrix A is the $(n \times m)$ matrix A^T whose columns are the rows of A.

That is,

$$(A^T)_{ij} = (A)_{ji}$$

EXAMPLE:

$$B = \begin{bmatrix} -5 & 1 & 0 \\ 2 & -3 & 4 \end{bmatrix} \quad \Rightarrow \quad B^T =$$

EXAMPLE:

- A symmetric matrix verifies $A^T = A$.
- An antisymmetric matrix verifies $A^T = -A$.

PROBLEM: Provide examples of (anti)symmetric matrices.

• PROPERTIES:

Let A and B be matrices of appropriate dimensions and $\mu \in \mathbb{K}$:

$$\circ (A^T)^T = A$$

$$\circ (A^T)^T = A \qquad \circ (A+B)^T = A^T + B^T$$

$$\circ \ (\mu A)^T = \mu (A^T) \qquad \circ \ (AB)^T = B^T A^T$$

$$\circ (AB)^T = B^T A^T$$

Proof: Let be $A \in \mathbb{K}^{m \times n}$ and $B \in \mathbb{K}^{n \times q}$

$$\left((AB)^T \right)_{ij} =$$

PROBLEM: Prove that $(ABC)^T = C^T B^T A^T$.

 \rightarrow 4.7

Algebra 2017/2018 4-19

Conjugate Transpose of a Matrix

• The **conjugate transpose** of an $(m \times n)$ matrix A is the $(n \times m)$ matrix A^* , or A^H , whose elements verify:

$$(A^*)_{ij} = \overline{(A)_{ji}}.$$

EXAMPLE:

$$B = \begin{bmatrix} -5 & 2-i \\ i & 3 \\ 0 & 4 \end{bmatrix} \quad \Rightarrow \quad B^* =$$

$$A = [\mathbf{a}_1 \ \mathbf{a}_2 \ \cdots \ \mathbf{a}_n] \quad \Rightarrow \quad A^* =$$

• PROPERTIES:

Let A and B be matrices of appropriate dimensions and $\mu \in \mathbb{K}$:

$$\circ (A^*)^* = A$$

$$(A+B)^* = A^* + B^*$$

$$\circ (\mu A)^* = \bar{\mu}(A^*)$$

$$\circ (AB)^* = B^*A^*$$

- $\circ A^* = A^T$ if and only if A is a real matrix.
- A **Hermitian** matrix verifies $A^* = A$.
- An antihermitian matrix verifies $A^* = -A$.

PROBLEM: Provide examples of (anti)Hermitian matrices.

 \rightarrow 4.8

Algebra 2017/2018

4-21

4.2. Inverse of a Matrix

ullet A square $(n \times n)$ matrix A is **invertible**, or **nonsingular**, if there exists a matrix B such that

$$AB = \mathbb{I}_n$$

• A noninvertible or singular matrix has no inverse.

EXAMPLE: This matrix is invertible: $A = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix}$

Because
$$C = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$$
 verifies $AC = \begin{bmatrix} 2 & 5 \\ -3 & -7 \end{bmatrix} \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix} = \begin{bmatrix} -7 & -5 \\ 3 & 2 \end{bmatrix}$

EXAMPLE: This matrix is invertible: $A = \begin{bmatrix} \cos \phi & -\sin \phi \\ \sin \phi & \cos \phi \end{bmatrix}$

Thus,
$$A^{-1} = \begin{bmatrix} \\ \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

EXAMPLE: Matrix B has no inverse and is, therefore, a singular matrix:

$$B =$$
 $=$ $=$ $=$ $=$

 \rightarrow 4.9

Algebra 2017/2018 4-23

Theorem 4.1. If A is an invertible $(n \times n)$ matrix, then the equation $A\mathbf{x} = \mathbf{b}$ has the unique solution $\mathbf{x} = A^{-1}\mathbf{b}$, $\forall \mathbf{b} \in \mathbb{K}^n$.

Proof:

- \circ That $\mathbf{x} = A^{-1}\mathbf{b}$ is a solution $\forall \mathbf{b}$ can be checked by a mere substitution:
- \circ As it has a solution $\forall \mathbf{b} \Rightarrow A$ must have a pivot in every row.

 $\begin{array}{ccc} A \text{ square} & & \text{No free variables} \\ \Rightarrow & & \Rightarrow \end{array}$

Warning:

Theorem 4.2. Let A and B be $(n \times n)$ matrices. Then:

$$AB = \mathbb{I} \quad \Leftrightarrow \quad BA = \mathbb{I}$$

Proof: ($AB = \mathbb{I} \Rightarrow BA = \mathbb{I}$)

 \circ Suppose that BA = X

 \circ Let's define $M = \mathbb{I} - X = [\mathbf{m}_1 \ \mathbf{m}_2 \ \cdots \ \mathbf{m}_n].$

As

That is,

o But now,

Leading to

Algebra 2017/2018 4-25

Theorem 4.3. If A is an invertible matrix, then A^{-1} is invertible and $(A^{-1})^{-1} = A$.

Proof:

Theorem 4.4. If exists, the inverse of a matrix is unique.

Proof: Let A be an invertible matrix, and B a matrix such that $AB = \mathbb{I}$ (that is, $B = A^{-1}$). Suppose there exists C such that $AC = \mathbb{I}$ (in other words, suppose that A has another inverse).

Theorem 4.5. If A is invertible, A^T is also invertible and $(A^T)^{-1} = (A^{-1})^T$.

Theorem 4.6. If A is invertible, A^* is also invertible and $(A^*)^{-1} = (A^{-1})^*$.

Proof:

EXAMPLE:

$$\begin{bmatrix} 1+i & 1+2i \\ -1 & -1-i \end{bmatrix} \begin{bmatrix} -1-i & -1-2i \\ 1 & 1+i \end{bmatrix} = \begin{bmatrix} 1+i & 1+2i \\ 1 & 1+i \end{bmatrix}$$

then,
$$\begin{bmatrix} -1+i & 1 \\ -1+2i & 1-i \end{bmatrix}^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1-i & 1 \end{bmatrix}$$

Algebra 2017/2018 4-27

Theorem 4.7. If A and B are invertible $(n \times n)$ matrices, then AB is invertible and $(AB)^{-1} = B^{-1} A^{-1}$.

Proof:

EXAMPLE: Consider the linear transformations:

$$A = \boxed{\mathsf{ROTATE}}$$
 $B = \boxed{\mathsf{EXPAND}}$.

Then,

$$AB =$$
 $=$ $=$

(in this order!) and the inverse is

PROBLEM: If A, B and C are nonsingular matrices of equal size, show that $(ABC)^{-1} = C^{-1} B^{-1} A^{-1}$.

 \rightarrow 4.11

• An **elementary matrix** is one that is obtained by performing one elementary row operation on an identity matrix.

EXAMPLE:

$$E_1 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \qquad E_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \qquad E_3 = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Notice: These matrices have a clear geometrical interpretation. They correspond to

Algebra 2017/2018 4-29

Theorem 4.8. If an elementary row operation if performed on an $(m \times n)$ matrix A, the resulting matrix can be written as EA, where E is the $(m \times m)$ elementary matrix created by performing the same operation on \mathbb{I}_m .

EXAMPLE: Consider the
$$(3 \times 2)$$
 matrix $A = \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix}$

$$\circ \mathbb{I} \sim E_1 \quad (r_3 \rightarrow 5 \, r_3)$$

$$E_1 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix} \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix} = \begin{bmatrix} \\ \end{bmatrix}$$

$$\circ \mathbb{I} \sim E_2 \quad (r_2 \leftrightarrow r_3)$$

$$E_2 A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

$$\circ \mathbb{I} \sim E_3 \quad (r_2 \to r_2 - 4r_1)$$

$$E_3 A = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a & d \\ b & e \\ c & f \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

$$A \sim A \sim A \sim$$

Algebra 2017/2018 4-31

Theorem 4.9. Every elementary matrix E is invertible and its inverse E^{-1} is the elementary matrix corresponding to the row operation that transforms E back into \mathbb{I} .

EXAMPLE: The matrix E_1 multiplies the 3rd row by five:

$$E_1 = \left[\begin{array}{rrr} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{array} \right]$$

Its inverse E_1^{-1} is the matrix that <u>divides</u> the 3rd row by five:

$$E_1^{-1} = \left[\begin{array}{c} \\ \end{array} \right]$$

Check:
$$E_1 E_1^{-1} = \cdots = \mathbb{I}$$

PROBLEM: Find the matrices E_2^{-1} and E_3^{-1} .

Theorem 4.10. An $(n \times n)$ matrix A is invertible if and only if A is row equivalent to \mathbb{I}_n . In this case, any sequence of elementary row operations that transforms A into \mathbb{I}_n also transforms \mathbb{I}_n in A^{-1} .

Proof:

A invertible \Leftrightarrow

 \Rightarrow

Then, $A^{-1} = E_p E_{p-1} \dots E_2 E_1$ and, in fact,

 \rightarrow 4.14

Algebra 2017/2018 4-33

An Algorithm for finding A^{-1}

- \circ Construct the matrix $\left[A \ \mathbb{I} \ \right]$
- o Find its reduced echelon form.
- \circ If this matrix has the form $[\ \mathbb{I}\ B\,]$, then $\ A^{-1}=B$. Otherwise, A does not have an inverse.

EXAMPLE:

$$\begin{bmatrix} 0 & 1 & 2 & 1 & 0 & 0 \\ 1 & 0 & 3 & 0 & 1 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 4 & -3 & 8 & 0 & 0 & 1 \end{bmatrix} \sim$$

$$\begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & -3 & -4 & 0 & -4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 2 & 1 & 0 & 0 \\ 0 & 0 & 2 & 3 & -4 & 1 \end{bmatrix} \sim$$

$$\begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 2 & 3 & -4 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 3 & 0 & 1 & 0 \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \end{bmatrix} \sim$$

$$\begin{bmatrix} 1 & 0 & 0 & -\frac{9}{2} & 7 & -\frac{3}{2} \\ 0 & 1 & 0 & -2 & 4 & -1 \\ 0 & 0 & 1 & \frac{3}{2} & -2 & \frac{1}{2} \end{bmatrix} \Rightarrow A^{-1} = \begin{bmatrix} \\ \end{bmatrix}$$

Algebra 2017/2018 4-35

PROBLEM: If exists, find the inverse of the matrix

$$C = \begin{bmatrix} 1 & 0 - 2 \\ 3 & 1 - 2 \\ -5 - 1 & 9 \end{bmatrix}$$

$$[C \ \mathbb{I}\] = igg[$$

Check: $C C^{-1} =$

 \rightarrow 4.16

Theorem 4.11. (The Square Matrix Theorem)

If $A \in \mathbb{K}^{n \times n}$, the following statements are equivalent:

- 1. \bar{A} is an invertible matrix.
- 2. There exists $C \in \mathbb{K}^{n \times n}$ such that $AC = \mathbb{I}_n$.
- 3. There exists $D \in \mathbb{K}^{n \times n}$ such that $DA = \mathbb{I}_n$.
- 4. A is row equivalent to \mathbb{I}_n .
- 5. A has n pivots.
- 6. The equation $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.
- 7. The columns/rows of A are linearly independent.
- 8. The equation $A\mathbf{x} = \mathbf{b}$ has a (unique) solution $\forall \mathbf{b} \in \mathbb{K}^n$.
- 9. The columns/rows of A span \mathbb{K}^n .
- 10. The columns/rows of A form a basis of \mathbb{K}^n
- 11. A^T is invertible.
- 12. A^* is invertible.
- 13. The linear transformation $\mathbf{x} \to A\mathbf{x}$ is bijective.
- 14. Col $A = \operatorname{Row} A = \mathbb{K}^n$
- 15. $\dim \operatorname{Col} A = \dim \operatorname{Row} A = n$
- 16. rank A=n
- 17. Nul $A = \{0\}$
- 18. $\dim \operatorname{Nul} A = 0$

ullet A transformation $T:\mathbb{K}^n\longrightarrow\mathbb{K}^n$ is called **invertible** if there exists a transformation $S:\mathbb{K}^n\longrightarrow\mathbb{K}^n$ such that

$$\begin{cases}
S(T(\mathbf{x})) = \mathbf{x} \\
T(S(\mathbf{x})) = \mathbf{x}
\end{cases} \quad \forall \mathbf{x} \in \mathbb{K}^n.$$

The transformation S is called the **inverse** of T.

Theorem 4.12. Let $T: \mathbb{K}^n \longrightarrow \mathbb{K}^n$ be a linear transformation and A its canonical matrix. T is invertible if and only if A is nonsingular. In this case, $S(\mathbf{x}) = A^{-1}\mathbf{x}$.

 \rightarrow 4.17

4.3. Partitioned (or Block) Matrices

EXAMPLE:

$$A = \begin{bmatrix} 3 & 0 & -1 & 5 & 9 & -2 \\ -5 & 2 & 4 & 0 & -3 & 1 \\ \hline -8 & -6 & 3 & 1 & 7 & -4 \end{bmatrix}$$

$$A = \begin{bmatrix} & & & & \\ & & & & \\ & & & & \end{bmatrix} = \begin{bmatrix} & & & \\ & & & \end{bmatrix}$$

where

$$A_{11} = egin{bmatrix} A_{11} = egin{bmatrix} A_{12} = egin{bmatrix} A_{12} = egin{bmatrix} A_{12} = egin{bmatrix} A_{23} = egin{bmatrix} A_{2$$

Algebra 2017/2018 4-39

EXAMPLE: Social web of 6 persons in 3 groups

Adjacency Matrix

$$M = \begin{bmatrix} 0 & 1 & 1 & 0 & 0 & 0 \\ 1 & 0 & 1 & 0 & 0 & 0 \\ \hline 1 & 1 & 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ \hline 0 & 0 & 1 & 0 & 1 & 0 \end{bmatrix} = \begin{bmatrix} M_{11} & M_{12} & M_{13} \\ M_{21} & M_{22} & M_{23} \\ M_{31} & M_{32} & M_{33} \end{bmatrix}$$

EXAMPLE: Jefferson High School

Algebra 2017/2018 4-41

EXAMPLE: Trade share matrix between countries

• PROPERTIES:

 Addition: Matrices of equal size and <u>identical partition</u> can be summed block by block:

$$A + B = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} + \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix}$$
$$= \begin{bmatrix} \begin{bmatrix} B_{11} & B_{12} & B_{13} \\ B_{21} & B_{22} & B_{23} \end{bmatrix}$$

Scalar Multiplication:

$$\lambda A = \lambda \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} = \begin{bmatrix} \\ \\ \end{bmatrix}$$

Algebra 2017/2018 4-43

Transpose of a matrix:

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \implies A^{T} = \begin{bmatrix} A_{11}^{T} & A_{21}^{T} \\ A_{12}^{T} & A_{22}^{T} \\ A_{13}^{T} & A_{23}^{T} \end{bmatrix} \neq \begin{bmatrix} A_{11}^{T} & A_{21}^{T} \\ A_{12}^{T} & A_{23}^{T} \end{bmatrix}$$

Conjugate transpose of a matrix:

$$A = \begin{bmatrix} A_{11} & A_{12} & A_{13} \\ A_{21} & A_{22} & A_{23} \end{bmatrix} \Rightarrow A^* = \begin{bmatrix} A_{11}^* & A_{21}^* \\ A_{12}^* & A_{22}^* \\ A_{13}^* & A_{23}^* \end{bmatrix}$$

EXAMPLE:

$$A = \begin{bmatrix} 2 & 0 & | & 8 \\ 1 & -5 & | & 3 \\ \hline 0 & -2 & | & 7 \end{bmatrix} \Rightarrow A^{T} = \begin{bmatrix} 2 & 1 & | & 0 \\ 0 & -5 & | & -2 \\ \hline 8 & 3 & | & 7 \end{bmatrix}$$

o **Multiplication of partitioned matrices:** Two matrices A and B of respective dimensions $(m \times n)$ and $(n \times p)$ are conformable for block multiplication when the number of columns of each partition of A is equal to the number of rows of the corresponding partition of B.

$$AB = \begin{bmatrix} 2 - 3 & 1 & 0 - 4 \\ 1 & 5 - 2 & 3 - 1 \\ \hline 0 - 4 - 2 & 7 - 1 \end{bmatrix} \begin{bmatrix} 6 & 4 \\ -2 & 1 \\ -3 & 7 \\ \hline -1 & 3 \\ 5 & 2 \end{bmatrix}$$

$$= \begin{bmatrix} A_{11} A_{12} \\ A_{21} A_{22} \end{bmatrix} \begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix} = \begin{bmatrix} B_{11} \\ B_{21} \end{bmatrix}$$

(Attention:

Algebra 2017/2018 4-45

Concentrate on the dimensions of the blocks:

$$\left[\ (3\times 5) \ \right] \left[\ (5\times 2) \ \right] = \left[\ (2\times 3) \ (\qquad) \\ (\qquad) \ (\qquad) \ \right] \left[\ (\qquad) \\ (\qquad) \ \right] =$$

$$= \begin{bmatrix} (2 \times 3)(3 \times 2) + (&)(&) \\ (&)(&) + (&)(&) \end{bmatrix} =$$

$$= \begin{bmatrix} (2 \times 2) + (& &) \\ (&) + (& &) \end{bmatrix} = \begin{bmatrix} (& &) \\ (& &) \end{bmatrix} = \begin{bmatrix} (& &) \end{bmatrix}$$

EXAMPLE: Let A be a block upper triangular matrix:

$$A = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix}.$$

Assuming that A is invertible, A_{11} is $(p \times p)$ and A_{22} is $(q \times q)$, find a formula for A^{-1} .

Call $B = A^{-1}$. Partition B in such a way that we can write:

$$AB = \begin{bmatrix} A_{11} & A_{12} \\ 0 & A_{22} \end{bmatrix} \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & B_{22} \end{bmatrix} = \begin{bmatrix} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{bmatrix}.$$

The dimensions of the matrices involved are:

$$\begin{bmatrix} (p \times p) & (&) \\ (&) & (q \times q) \end{bmatrix} \begin{bmatrix} (& &) & (& &) \\ (& &) & (& &) \end{bmatrix} = \begin{bmatrix} (& &) & (& &) \\ (& &) & (& &) \end{bmatrix}.$$

Algebra 2017/2018 4-47

The equation can be written:

$$\left[\begin{array}{ccc} & & & \\ & & & \\ & & & \\ \end{array}\right] = \left[\begin{array}{ccc} \mathbb{I} & 0 \\ 0 & \mathbb{I} \end{array}\right].$$

Equating components, we obtain:

(a)
$$= \mathbb{I}$$

(b) $= 0$
(c) $= 0$
(d) $= \mathbb{I}$

We have to solve 4 matrix equations, which represent a linear system of $(p+q)^2$ equations with $(p+q)^2$ unknowns.

- o (c)
- o (a)
- o (b)

Obtaining,
$$A^{-1} = \left[\begin{array}{c} \\ \end{array} \right].$$

Algebra 2017/2018 4-49

Theorem 4.13. A block diagonal matrix is invertible if and only if each of the diagonal blocks is invertible.

Proof: The case of two blocks follows from the above result when $A_{12} = 0$.

Theorem 4.14. A diagonal matrix is invertible if and only if none of its diagonal elements is zero.

$$\begin{bmatrix} a_{11} & 0 & \dots & 0 \\ 0 & a_{22} & & 0 \\ \vdots & & \ddots & \\ 0 & 0 & & a_{nn} \end{bmatrix} = \begin{bmatrix} \\ \\ \\ \end{bmatrix}$$

PROBLEM: Determine under what conditions the following matrix is invertible and, in that case, find its inverse:

$$\left[\begin{array}{cc} \mathbb{I}_m & 0 \\ A & \mathbb{I}_n \end{array}\right].$$

 \rightarrow 4.19

Algebra 2017/2018 4-51

4.4. Determinants

• Given an $(m \times n)$ matrix A, we define the **minor** A_{ij} as the $((m-1) \times (n-1))$ matrix obtained by removing the ith row and the jth column of the matrix A.

EXAMPLE:

$$A = \left[\begin{array}{ccc} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{array} \right]$$

• Let A be an $(n \times n)$ matrix whose entry $(A)_{ij} = a_{ij}$. We define the **determinant** of A as

$$\det A = |A| = \sum_{j=1}^{n} (-1)^{j+1} a_{1j} \det A_{1j} = \sum_{j=1}^{n} a_{1j} C_{1j},$$

where $C_{ij} = (-1)^{i+j} \det A_{ij}$ is referred to as the ij cofactor of A.

Theorem 4.15. The determinant of a square matrix A can be expressed as the cofactor expansion along $\underline{\text{any}}$ row of the matrix

$$\det A = \sum_{j=1}^n (-1)^{k+j} \, a_{kj} \, \det A_{kj} = \sum_{j=1}^n \, a_{kj} \, C_{kj} \quad \begin{pmatrix} \text{along the} \\ k \text{th row} \end{pmatrix}$$

WARNING:

0

0

Algebra 2017/2018 4-53

EXAMPLE:

$$\det \begin{bmatrix} 1 & 5 & 0 \\ 2 & 4 & -1 \\ 0 & -2 & 0 \end{bmatrix}$$

1st row:

=

2nd row:

=

If A is an $(n \times n)$ triangular matrix, Theorem 4.16. its determinant is the product of its diagonal entries.

$$\det \begin{bmatrix} a_{11} & 0 & 0 & 0 & 0 \\ \star & a_{22} & 0 & 0 & 0 \\ \star & \star & a_{33} & 0 & 0 \\ \star & \star & \star & a_{44} & 0 \\ \star & \star & \star & \star & a_{55} \end{bmatrix} =$$

Algebra 2017/2018 4-55

Theorem 4.17. Let A be an $(n \times n)$ matrix. If we obtain a matrix B, $\circ \ \, \text{By adding to a row of } A \ \, \text{the multiple of another row,} \\ \det B = \det A.$

$$\det B = \det A$$
.

 $\circ \ \mbox{By multiplying one row of A by λ,} \\ \det B = \lambda \ \det A.$ $\circ \ \mbox{By interchanging \underline{two} rows of A,}$

$$\det B = \lambda \det A.$$

$$\det B = -\det A.$$

EXAMPLE:

Theorem 4.18. Let A be a square matrix and U an echelon matrix obtained from A by adding multiples of rows and r row interchanges (but without multiplying any row by a scalar!). Then,

$$\det A = \begin{cases} 0 & \text{if } A \text{ is not invertible} \\ (-1)^r \cdot \begin{pmatrix} \text{product of} \\ \text{the pivots} \end{pmatrix} & \text{if } A \text{ is invertible} \end{cases}$$

Proof:

 \rightarrow 4.20

Note: This would add a new statement to theorem 4.11:

19. The determinant of A is nonzero.

Algebra 2017/2018 4-57

WARNING: In general,

$$A \sim B \implies \det A = \det B.$$

Check theorem 4.17!

WARNING: In general,

$$\det(A+B) \neq \det A + \det B.$$

EXAMPLE: If it was true, all determinants would be zero:

$$\det \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \det \left(\begin{bmatrix} a & 0 \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & b \\ 0 & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ c & 0 \end{bmatrix} + \begin{bmatrix} 0 & 0 \\ 0 & d \end{bmatrix} \right)$$

Theorem 4.19. If A and B are square matrices,

$$\det(AB) = \det A \, \det B.$$

Theorem 4.20. If A is a square matrix,

$$|A^T| = |A|$$
 and $|A^*| = \overline{|A|}$

Proof:

- \circ For elementary matrices, it's easy to see that $|E| = |E^T|$.
- \circ If we obtain an echelon form of a matrix A:

Leading to

 \circ Now, as U is a triangular matrix, $|U^T| = |U|$ and, consequently

 \rightarrow 4.23