TEMA 3 - SIGNALS AND SYSTEMS IN THE FREQUENCY
DOMAIN

LINEAR SYSTEMS WITH CIRCUIT APPLICATIONS

Oscar Barquero Pérez
Departamento de Teoria de la Sefal y Comunicaciones - Universidad Rey Juan Carlos
Based on Andrés Martinez and José Luis Rojo slides oscar.barquero@urjc.es
(updated November 12, 2018)

Biomedical Engineering Degree

/60



LTI systems and complex exponentials

Index

° LTI systems and complex exponentials
@ Introduction
@ Frequency response of LTI systems

/60



LTI systems and complex exponentials Introduction

LTI systems response to sinusoidals

Motivation
@ In the previous topic, the LTI systems were characterized by means of their impulse
response: the time domain.

@ Now we will see how to characterize the LTI systems by means of their response to sinusoids:
the frequency domain.

@ Usage of complex exponential functions as a mathematical tool simplifies calculations.

@ The frequency domain representation is the foundation of current telecommunications
systems.

Outline of this topic
@ We start seeing that the response of LTI systems to complex exponentials depends on the
frequency.
@ We represent periodic signals as the sum of exponential functions: Fourier Series.

© We represent any type of signals as the sum (by means of integration operation) of
exponential functions: the Fourier Transform.

© We study to basic applications: filtering and modulation.




Frequency response of LTI systems

The response of LTI systems to complex exponentials
@ Consider a continuous time LTI system, characterized by A(z).
@ Suppose that the LTI system input is a complex exponential x(r) = €%, being so = o + jw.
@ The LTI system output is calculated by means of the convolution method:

oo oo

x(T)h(t — T)dT = / x(t — 1)h(7)dT =

— o0

(1) = x(t) * h(t) = € % h(t) = /

— o0

o0 oo
- / =T (1) dr = ¢! / h(r)e=0dr = x(1)H(so)
— 00 — 00
@ H(sp) is a (complex) constant, that depends on the impulse response and on the exponent of
the system input (the exponential function).

@ Complex exponential signals are known as eigenfunctions of the LTI systems, as the system
output to these inputs equals the input multiplied by a constant factor. Both amplitude and
phase may change, but the frequency does not change.




LTI systems and complex exponentials F P of LTI sy

Frequency response of LTI systems

Response to real exponential functions and to sinusoids

x(t=e™ X(t=sin(5x t)

05 o os 1 15 2 25
t

vt e

System function
@ If we represent the factor scales for any s,, we obtain the system function:
o0
H(s) = / h(T)e *Tdr
— 00

@ Note that this function includes the system response to any complex exponential function.

@ Also note that this function depends on the impulse response, that includes all the information
related to the LTI system.

v
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LTI systems and complex exponentials F P of LTI sy

Frequency response of LTI systems

Example: output calculation using the system function
@ Consider a LTI system characterized by h(r) = u(z). Calculate the output when the input is:
x(t) = Ae’V' + Be®™' + Ce*!
@ We start calculating the system function:
oo o0 oo
H(s) = / h(T)e Tdr = / u(t)e*Tdr = / € TdT =Reai(s)>0
—oo —c0 0

= TR = -1 = -

—S s

@ Using the linearity property:

A B C
y(t) = H(s1)Ae"" + H(sy)Be' + H(s3)Ce™' = —e'I! 4 — %! — %'
s s 83

where we assume that Real(s; ), Real(s>), Real(s3) > 0.




LTI systems and complex exponentials F P of LTI sy

Frequency response of LTI systems

System function and frequency response

Complex exponentials with an exponent that is an imaginary number, x(¢) = ¢, are always
periodic signals.

Moreover, we will see that any periodic signal can be represented as a weighted sum of this
kind of signals.

What is the LTI system response to these complex exponentials? We can perform
convolution. Or we can use the system function H(s) in the special case s = jw.

y(1) = H(s = jw)x(r) = &' /00 h(T)e ™ Tdr = H(jw)e™!

— 00

The LTI system response to H(jw) is called frequency response or transfer function. This
function depends on the frequency of the input and it will affect (modify) different frequencies
differently (amplitude and phase).
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LTI systems and complex exponentials F P of LTI sy

Frequency response of LTI systems

Example: calculation of the frequency response

@ Given a LTI system characterized by h(t) = e~"u(t), calculate and plot its frequency response.
Calculate the output when the input is x(r) = 2" + 3™,

@ We calculate the frequency response:

oo o0 o0
H(jw) = / )e Tdr = / )e Tdr = / e~ DT gr —
0
- [e=(1Hw)T)00 = 1w
1+ jw 0 1+jw 14+ w?
Tobsieio)
@ Its modulus and phase are: o
_ | _ .
|H(jw)| = m; /H(jw) = arctan (—w) M . T

o
-atan(o)

@ The requested output is:

rad

2 ; 3 ;
y(l) — 7.e/2t 4 .e/ﬂ'l
L+2f 1+ 7 I T e B A




Fourier Series

Index

o Fourier Series
@ Fourier series representation for periodic signals
@ Properties of the Fourier series representation
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Fourier Series Fourier series representation for periodic signals

Fourier series representation for periodic signals

Fourier series representation

@ Jean Baptiste J Fourier (advisor and soldier with Napoleon, mathematician and politician)
proved in 1807 that any periodic signal with fundamental period T, can be represented as a
linear combination (weighted sum) of complex exponential functions.

@ The set of harmonically related complex exponentials
is defined as:

ik 27
o) =T conk =0,+1,+2,...

@ With fundamental periods: Ty, %, %, ..

@ And frequencies: fy, 2fo, 3fo, - - - ' :

@ Then, if x(r) = x(t + Ty), it may be represented using Fourier series as:

e}

x(r) = Z areto!

k=—o00

@ Examples: demo for ECG, speech and square wave.
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Fourier Series Fourier series representation for periodic signals

Fourier series representation for periodic signals

Convergence example

Figure 3.9  Convergence of the Fourier series representation of a square
wave: an illustration of the Gibbs phenomenon. Here, we have depicted the
finite series approximation x, () = NV

(t)

wae* " for several values of N.
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Fourier Series Fourier series representation for periodic signals

Fourier series representation for periodic signals

Coefficient calculation

@ In order to calculate coefficients a;, we multiply both sides by e /%0’ and integrate over a T,
period:

To : Ty 22 ) . ©° Ty _
/ x(t)e—ﬂwoldt — / E ake/kwote—jlwotdt — 2 ax / e/kwote—_/lwotdt
0 0 0

k=—o0 k=—o0

0, sik#l

. then:
To, Sik=1

Considering that ;0 ¢/(*—D«otdr = {

To " 1 To "
/ x(n)e Nt = Ty = a1 = 7/ x(t)e /0" dr
0 To Jo

@ Summary for the Fourier series representation for continuous-time periodic signals:

Analysis equation: x(t) = » a0’

k=—o0

. . 1 [T .
Synthesis equation: a; = T / x(r)e kol gy
0Jo
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Fourier Series Fourier series representation for periodic signals

Fourier series representation for periodic signals

Relation with the frequency response

@ By means of this relation we can easily characterize the output of a LTI system to an input
that is a periodic signal.

@ Recall that a LTI system has a frequency response H(jw).

@ Recall that when the input of a LTI system is x(r) = &/, the output is
y(t) = H(jwo)x(t) = H(jwo)e™o".

o If x(r) = x(¢t + To) (periodic), then it has the following Fourier series representation:

oo

x(t) = Z age®ot

k=—o00
@ Therefore, the output y(¢) can be calculated using the linearity property:

e}

Y1) = > axH(jkwo)e* !

k=—o0

Questions:

1 Run the script demoDSF.m and compare the Fourier series representation of the input and
output signals of the given LTI system.
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Fourier Series Fourier series representation for periodic signals

Fourier series representation for periodic signals

Example: calculation of Fourier series representation coefficients

@ Calculate the coefficients of the Fourier series representation of x(r), periodic with
fundamental period T, defined by:

1, sijf<T
x(1) = .
0, siT|<|]|<T/2

BV T t

@ As x(¢) is periodic it can be represented using Fourier series: x(f) = >°0° _ __ age*wor.

@ Coefficient calculation:

1 T " 1 T/2 " 1 Ty "
ax = 7/ x(t)e ol = 7/ x(t)e w0l dr = 7/ le /4 0ldr =, )
T Jo TJ-1)2 T J-1,

A" R P LY
T]kwo JkwoT o

@ For k = 0, we calculate the coefficient independently:

1 i 1 [ 2T,
ag = — /x(z)e’”“’o’dt = f/ ldr = =1
T/ TJ) s, T

We can see that in this case, it corresponds with the general case of g for k = 0 by solving

the indeterminate form (this is not the general case).

v
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Fourier Series Fourier series representation for periodic signals

Fourier series representation for periodic signals

Example: calculation of Fourier series representation coefficients by inspection

@ Calculate the coefficients of the Fourier series representation of x(r) = sin(wot).

@ As x(7) is periodic (fundamental period Ty = 27/wy) it can be represented using Fourier
series: x(t) = S°02 _  agelor,
@ But in this case we don’t need to integrate, as:

1 1
x(t) = sin(wot) = 27_9’“’0’ — 27je71“’0'

@ Therefore, comparing both equations:

1 —1
k=1=a =—; k=—-1=a_| = —; ak:0Vk;£:t1
2j 2j

Questions:

2 Calculate the Fourier series representation of x(¢) = cos(57t 4+ 7/3) + sin(107z), without
solving the analysis equation.

3 Is it possible to calculate the Fourier series representation of
x(t) = cos(57t + 7/3) + sin(107)?
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Fourier Series Properties of the Fourier series representation

Properties of the Fourier series representation

Average value
@ Coefficient ao of any Fourier series representation is the average value of the signal, as:

ap

1 ] 1
=— [ x(r)*0idr = —/ x(1)dt
To Jr, To Jr,

Notation

@ We consider periodic signals, x(t) = x(¢ + T) and y(r) = y(¢t + T), with identical fundamental
period T.

@ The coefficients will be x(¢) IS, a; ¥(1) ELN

Linearity
@ If z(r) = Ax(r) + By(t) = z(t + T), then:

Z(t) —)DSF cx = Aay + Bby

© Proof: z(r) = Ax(t) + By(1) = A0 ayel*ol £ BY 2 ppekent —
DS G B e = S o,
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Fourier Series Properties of the Fourier series representation

Properties of the Fourier series representation

Time shifting
@ Consider y(t) = x(t — 1), then y(r) = y(t + T), and moreover:

y(t) = x(t — 1) DSEy by = age w0

@ Proof: We know that

o)

. 1 /7 )
x(t) = Z ™' con a = 70/0 x(r)e kot gy

k=—oc0
@ As y(r) is also periodic, it can be represented using Fourier series y(r) = >°02 b,
given by:

17 ; 17 ;
by = f/ y(r)e kot g = f/ x(t — tg)e R0l gy
T Jo T Jo

Variable change: r — 1y =1; dt=dl; t=0=1=—1y; t=T = 1=T — 1y. Therefore:

TJ_ T

fo
v

1 [—to+T ) ) 1 ) .
by = — / x(l)e=Holltio) g — g=ikwoto /‘x(l)eﬂk“’oldl = ekt g,
T
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Fourier Series Properties of the Fourier series representation

Properties of the Fourier series representation

Time reversal

@ Consider y(t) = x(—t). Then y(z) is periodic and:

Wo) = x(=1) L by =a_y

@ Proof: homework (similar to the time shifting case).

Time scaling

@ Consider y(r) = x(at). Then y(¢) is periodic, but the fundamental period is T; = T/a and:

(1) = x(at) L5 by = a4

@ Note that this Fourier series representation considers different period, w; = awy, and:

oo

W= > aeer

k=—o00

@ Proof: homework.
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Fourier Series Properties of the Fourier series representation

Properties of the Fourier series representation

Multiplication
@ Consider z(r) = x(¢)y(¢) that has a fundamental period of 7 and:

o]

W) =x(y() THha= > api

I=—00

@ Proof: see Oppenheim.

Conjugation and conjugate symmetry

@ Consider y(r) = x*(r) that has a fundamental period of T and:

vy =x* (1) L by = a*,

@ Proof: homework.

@ This property is fundamental for the understanding of the utility of complex exponential
functions.
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Fourier Series Properties of the Fourier series representation

Properties of the Fourier series representation

Parseval’s relation

@ The average power of a periodic signal x() equals the sum of the squared module of all its
Fourier series representation coefficients.

o0
/ hOPd = 3 Jal?

k—foo

@ Proof: homework, consider that [, |x(¢)|?dr = [, x(£)x* (1)dr.

Differentiation and integration

@ We have the following:

t
y(r) = ( ) EN by = jkwoay
dt
! FS 1
Z(1) = / x(T)dT —= cx = —ax
o Jkwo

@ Proofs: homework.

@ Note: for the integration property, it is necessary that ap = 0 so z(¢) is periodic. In this case, it
is easy to see that ¢y = 0.
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Properties of the Fourier series representation

Tabla de propiedades del DSF

TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES

Property Section  Periodic Signal Fourier Series Coefficients
x(r)) Periodic with period T and a
(1) fundamental frequency wo = 27/T by
Linearity 35.1 Ax(r) + By(n) Aa; + Bby
Time Shifting 352 (i~ 1) ae i = g e M
Frequency Shifting eiMent = QMM x(g) au
Conjugation 356 (@) a,
Time Reversal 353 x(-n) a.
Time Scaling 354 x(at), & > 0 (periodic with period T/a) a
Periodic Convolution f )yt - dr Tab,
5
Multiplication 355 X(Oy(0) > abiy
i~
o d . 2
Differentiation ;‘I" jhwoay = jkFau
. ‘ (finite valued and 1 _ [
Integration I KOt riodic only if ay = 0) (jkwn )a‘ - (mz«m o
a=a,
Relai} = Rela_i}
Conjugate Symmetry for 356 X(1) real Imla) = ~Imia )
Real Signals il = lail
fa, = —4a.4
Real and Even Signals 356 (1) real and even a real and even
Real and Odd Signals 356 (1) real and odd a, purely imaginary and odd

Even-Odd Decomposition
of Real Signals

{x,u) =8&{x(n} [x(r) real]
x,(1) = Od{x(t)} [x(r) real]

Refa,}
Jjomlai}

Parseval's Relation for Periodic Signals

L[ obdi = S
7 | wopas - S
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Fourier Transform

Index

° Fourier Transform
@ Fourier Transform for aperiodic signals
@ Properties of the Fourier Transform
@ Basic Fourier Transform pairs
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Fourier series representation for periodic square wave (I)

@ Fourier also proposed a representation for aperiodic signals using complex exponentials. This
representation uses the limit and integral concepts (instead of sums).

sm(kaTl) 2T| 27r

@ We begin with a square wave, where a; = and ap = , with wg =

@ For fixed T} and for increasing T, we can see how the Fourier series representatlon
coefficients vary. For that, we can express these coefficients as:
2sin(wTh)

w |w=kwy

Ta, =

@ We plot for T = 4T, T = 8T, and T = 16T}.

()

-27 -T I-mT I T v t

2

Figure 4.1 A continuous-time periodic square wave.
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Fourier series representation for periodic square wave (Il)

Figure 4.2 The Fourier series co-
efficients and their envelope for the
periodic square wave in Figure 4.1 for
several values of T (with T, fixed)
@) T =4 () T = 8T (e) T
167,

@ In this case,

limg—soox(f) = I1 ( ! )

a
the Fourier series representation coefficients become more and more closely spaced
samples of the envelope, that is a sinc function.
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Fourier series representation for aperiodic signals (I)

Figure 4.3  (3) Aperiodic signal x(): (b) periodic signal (1), constructed
o be equal to x(1) over one period

@ In general, any finite-time aperiodic signal x(¢) can be represented as:

X(1) =l oo¥(t) = limr oo 3 x(t — KT)

k=—00

@ Signal x(r) is periodic with fundamental period T, and it admits a Fourier series

representation:
oo

. 1 .
()= Y @, cong = o /)?(t)e_]k“’(”dt

k=—o0 T
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Fourier series representation for aperiodic signals (Il)

@ We can calculate the Fourier series representation coefficients as:

1 T/2 " 1 T, "
ay = 7/ x(t)e *0ldr = ;/ x(t)e kol gy

TJ)-71)2 -7

@ We define the Fourier Transform of x(t) as the envelope of Tay:

X(jw) = / = (et

—0o0

@ Therefore, we can write the coefficients as
ar = 1X(jkwy), and then: ol

Area = X(kwge™ ' w,
00

- .. i )
)= >0 7X(ka)d = -
k=—o00 B+ Theag
L
1 s . ikwnt Figure 4.4 Graphical interpretation
= — Z X (jkwo )0 wq ofeq (47)
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Fourier series representation for aperiodic signals (lll)

@ Calculating the limit limr—, o in the previous equation, we obtain:
(1) = x(t); kwo — w (it is a continuous variable)
> - /; wo — dw (infinitesimally close)

and the obtained equation is the Inverse Fourier Transform:
1 R ;
x(t) = —/ X (jw)e! dw
27 J — o

@ Even if this demo is performed for finite-time signals, it is also suitable for all energy-defined
signals (more precisely when the Dirichlet boundary conditions are fulfilled).

@ Summary for the Fourier Transform:

oo

Analysis equation: x(r) = zi/ X (jw)e ™! dw
T J—oo

Synthesis equation: X (jw) :/ x(r)e™*'dr
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Example: Calculation of the Fourier Transform of a positive exponential function
@ Calculate the Fourier Transform of x(t) = e~“u(t), being a > 0.

1
a—+ jw

X(iw)=/ x(t)e_-’l“”dt:/O e e = ... =

—o0

@ Higher values are localized at low frequencies.

Example: Calculation of the Fourier Transform of the unit impulse
@ Calculate the Fourier Transform of x(r) = 6(z).

X(jw) = /_o:o S(r)e i = /_o:o 8(r)dt = 1

@ The unit impulse has a Fourier Transform consisting of equal contributions at all frequencies.
v

Questions:

4 Calculate the Fourier Transform of x(r) = e=4ll.
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Example: Calculation of the Fourier Transform of the rectangular pulse signal

@ Calculate the Fourier Transform of x(r) = II (Til) (rectangular pulse between —T, y T}).

i 2T s T
X(jw) :/ ﬁwdt*/ el = A sinwh) _ = 2Tysinc(wTy)
— Ty le

@ The Fourier Transform of a rectangular pulse is the sing function. Their width are inversely
proportional.

T

v rectangular pul o 2 Fouer iansorn patof Eange 45 4 Fouter o fr Figure 4.10  The sinc function.
Figure 48,0 T recanorpoe s of Gl A 4 s ) EELEL TN e e e
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Fourier Transform Fourier Transform for aperiodic signals

Fourier Transform for aperiodic signals

Example: rectangular pulse and sinc

X0
Wy
xlt)
W/
X0
"W, )
Wy/w
t t
e e = wWsy W t
Xyl Xaljw) Xyje)
1 1 1
W, w, . wy wy . Wy W, -
@ ® ©

Fiqure 4.11  Fourier transform pair of Figure 4.9 for several different values of W.
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Fourier Transform Properties of the Fourier Transform

Properties of the Fourier Transform

Properties of the Fourier Transform (1)

@ We use the notation x(r) T, X(jw).

o Linearity: z(r) = ax(r) + by(r) 2L Z(jw) = aX(jw) + bY (jw).

@ Time shifting: y(¢) = x(t — 1) EAlUN Y(jw) = e 90X (jw).

@ Conjugation and Conjugate Symmetry: y(¢) = x* () EAUN Y(jw) = X*(—jw).
@ Differentiation and Integration:

(1) = de(zt) T, ¥(jw) = jwX (jw)

y(t) = /_t x(m)dr L1 y(jw) = jlwx(;w) + 7X(0)8(w)

Questions:

5 Prove these properties.

31/60




Fourier Transform Properties of the Fourier Transform

Properties of the Fourier Transform

Properties of the Fourier Transform (ll)
o Time scaling: y(r) = x(ar) T1» ¥(jw) = (L X(2).

@ Time reversing: y(r) = x(—1) EAUN Y(jw) = X(—jw).
@ Duality:
8() Th f(w)

70 L 2mg(—w)

Xlt)
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Properties of the Fourier Transform

Questions:
6 Prove the previous properties.

7 Show that the property holds by using that the Fourier Transform of a sinc is a rectangular
pulse and viceversa.

Example: Duality property

@ We know that x(r) = =2l 27, X(jw) = rzwz-
2
142"

@ We want to calculate the Fourier Transform of y(r) =

@ By using the duality property, ¥ (jw) = 2me~2l«l,
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Properties of the Fourier Transform

Properties of the Fourier Transform (llI)
@ It also worth mention that:

30) = —jix()) 2T v = B8

(1) = 0'x(t) L5 y(juw) = X(j(w — wp))

1 FT .
0) = = x(0) + 7x0)3(0) T ¥Go) = /

w

X(jm)dn

Parseval’s Relation
@ The energy of signal x(r) can be calculated in the frequency domain as:

o0 1 oo
Eoo = / () Pt = — / 1X (joo) Pl
27 J oo

—o0

Questions:
8 Prove the previous properties.
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Properties of the Fourier Transform

The convolution property
@ For a LTI system, characterized in the time domain by 4(z) and in the frequency domain by

H(jw):
y() = x(1) % h(t) ZLs ¥ (jw) = X (jw)H (jw)

Y (jw) :/ Ve I@ldr = / / x(7)h(t — T)dre ' dr =
:/ X(T)/ h(t —T)e ™ dtdr =,y =
oo o

= /j:o x(T) (/j:o h(u)e*jwudu) e T dr = H(jw) /j:o X(F)eTdr =

= H(jw)X(jw)

@ Proof:

@ It also worth mention that:

2) = x(0y(1) 5> Z(jw) = iX(jw) < Y(jw)
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Properties of the Fourier Transform

Questions:
9 Consider the Fourier Transform of a rectangular pulse. Calculate the Fourier Transform of:

y(t) =u(t— 1)+ 0.5u(t — 2) — 0.5u(t — 3) — u(t — 4)
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Fourier Transform Basic Fourier Transform pairs

Basic Fourier Transform pairs

Fourier Transform of a pure imaginary exponential function

@ The Fourier Transform of a pure imaginary exponential function is an impulse.
() = 0t IT, X(jw) = 218 (w — w)

@ Proof: as X(jw) = 2mé(w — wp), then:

/ X(jw)e™ dw = / j(w — wp))e* dw =
o

- / 5(j(w — wo))ei 0" duy = et

@ However, this proof is only valid for energy-defined signals.

@ Note that the Fourier Transform can be also calculated for power-defined signals. In this case
we obtain impulse functions in the transformed signal.
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Fourier Transform Basic Fourier Transform pairs

Basic Fourier Transform pairs

Fourier Transform for periodic signals

@ Using previous transform pair, we can obtain the Fourier Transform for any periodic signal
x(t) = x(t + T), using the linearity property:

oo oo}
x(1) = Z agelkwor I X(jw) = Z 2mard(w — kwp)

k=—o0 k=—o00

Fourier Transform of a cosine signal

© We can express x(f) = cos(wot) as x(f) = /0 + Le—/«0’. Therefore, its coefficients are
ay=a_; = 1/2,yak :OfOrk;éO.
@ lIts Fourier Transform is:

= 1 1
X(jw) = 2mapd(w — kwy) =27 | =0(w — wp) + =(w + wp)
3 2radte k) =27 (3000~ + 300+ )

@ Therefore:
(1) = cos(wor) 2L X(jw) = 7 (§(w — wo) + 6(w + wp))
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Fourier Transform Basic Fourier Transform pairs

Basic Fourier Transform pairs

Fourier Transform of a sine signal

@ For x(¢) = sin(wot) we can obtain the Fourier Transform in a similar way:

x(t) = sin(wor) 1 X(jw) = ; (8(w — wo) — 8(w + wp))

Fourier Transform of a constant

@ The Fourier Transform of signal x(r) = 1 can be calculated considering x(¢) as a periodic
signal with fundamental period T, where ap = 1y a; = 0 for k # 0. Then:

X(jw) = Z 2magd(w — kwp) = 2w (w)

k=—o0
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Fourier Transform Basic Fourier Transform pairs

Basic Fourier Transform pairs

Fourier Transforms considering train of impulses

|
§——
A f——
© fmm
§p——
|
ol
|
|
|

N 5N 3 ok W ) - . T T
! N ®
Figure 4.12  Fourier transform of a symmetric periodic square wave. Figure 4.13  Fourier transforms of (a) x(t) = sin wst; (5) A(f) = coS axt. Figure 4.14  (a) Periodic impulse train; (b) its Fourier transform.
v
Questions
10 Calculate the Fourier Transform of the train of impulses x(r) = >-2 _  6(t — kT).
11 Calculate the Fourier Transform of x(r) = 2(%)
12 Calculate the Fourier Transform of y(r) = u(r).
13 Calculate the Fourier Transform of x(r) = 6(¢r — to).
14 Calculate the Fourier Transform of x(¢) = te~“u(r), with a > 0.
v
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Summary of the Fourier Transform

Properties of the Fourier Transform

TABLE 4.1  PROPERTIES OF THE FOURIER TRANSFORM

Section Property Aperiodic signal Fourier transform
X0 X(jw)
30 ¥(jo)
431 Linearity ax(t) + by(r) aX(jw) + bY(jw)
432 Time Shifting Xt~ to) & o X(jw)
436  Frequency Shifting & x(t) X(j(@ - wo)
433 Conjugation X0 X'~ jo)
435 Time Reversal x(=1) X(-jw)
435 Timeand Frequency  x(a) ‘l‘x (L'")
Scaling a\a
44 Convolution X0+ ¥ X(jw)Y(jw)
45 Multiplication X0y ,‘;I"xu‘a)rotw - 0)do
434 DiffereniaioninTime % x() jwX(jw)
434 Integration J x(nydt f;X( Jjw) + wX(0)5(w)
436 Differentiation in 1x(0) J di X(jw)
Frequency @
X(jw) = X*(~ jw)
ReX(jw)} = Re{X(~ jw)}
433 Conjugate Symmetry (1) real In{X(jw)) ImiX(~ jw)}
for Real Signals X(w)| = (X jw)]
4X(jw) = - EX(~ jw)
433 SymmetryforRealand  x(1) real and even X(jw) real and even
Even Signals
433 SymmetryforRealand  x(r) real and odd X(jw) purely imaginary and odd
0dd Signals
433 EvenOdd mpo. 0 = O} (xOreal)  RelX ()}
sition for Real Sig-  *() = Od{x(n} [x(n)real]  jImX(jw)}
nals
437 Parseval's Relation for Aperiodic Signals

[ |x(0)Rdt = 2%[ X(jw)dw
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Summary of the Fourier Transform

Basic Fourier Transform pairs

TABLE 4.2 BASIC FOURIER TRANSFORM PAIRS

Fourier series cocflcients
Signal Fourier transform (i periodic)
adw - kon) “
o~ 280 - w0) @l
@ @ =0, otherwise
oo 50~ w0) + 5@ @ = =i
cosont Moo o) + 5@+l o O .
B P———
sin (5@ - w0) - 5(@ 3
ut R R B e

=1 a=0k#0
=1 2m8(@) this i the Fourier sries represeatation for
any choice of 7 > 0

Perodic square wave
S [1<T, e, . o o
0=lo 7<= ST, k) T sin (M) - S

- ™
X+T) = x0)

- :
.Z'BU T) @= g for all k

W<,

ol uin -
sawe -

&
80 1 -
) ) -

jo

8- 1) e -
« “u), Rela) >0 ; .'m -

N i
e u(r). Rela) > 0 @y -
e, _
Gelal >0 @+ jor
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Symmetries

Cuestiones

15 The Fourier Transform of any real signal is a Hermitian function (the magnitude is an even
function of frequency and the phase is an odd function of frequency or equivalently the real
part is an even function of frequency and the imaginary part is an odd function of frequency).
Prove this symmetry property graphically using the signal x(7) = e~%u(z), with a > 0.

16 The Fourier Transform for any real and even signal is also a real and even function with the
frequency. Prove this symmetry property graphically using the signal x(r) = eI, with a > 0.

17 The Fourier Transform of the real part of a real signal x(¢) is the real part of X(jw). Calculate,
using the symmetry property, the Fourier Transform of x(r) = el with a > 0.

18 Prove the Conjugation property. Using this property, prove that if x(z) is a real signal, its

Fourier Transform is a Hermitian Function. Moreover, prove that is spectrum |X(jw)| is an
even function of frequency.

43/60




Index

o Problems

44/60



Problems

Problem 1 (*)

Let be x(r) a periodic real signal with fundamental period T = 8 s. The non-zero coefficientes of
the Fourier Series of x(t) are a; = a_1 = 2, a3 = a* ; = 4j. Express x(t) in the following way:

x(t) = ZAk cos (wit + ¢r)

k=0

Problem 2 (*)

Compute the Fourier Series coefficients a; of the following periodic signal with wy = 27.

x(r) =

05, 0<t<05
—05, 05<t<]1
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Problems

Problem 3

Consider the each of the following signals:

x(t) = cos(4mt); y(t) = sin(4nt); z(r) = x(2)y(2).
@ Determine the FS coefficients of x(r).
@ Determine the FS coefficients of y(r).

© Determine the coefficients of z(r) using the
direct expression of the multiplication of
both signals (without using properties).

Problem 4 (*)

Determine FS for each of the following signals.

x(1)
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Problems

Problem 5 (*)

Let be X(jw) the Fourier Transform of the signal x(¢). Use FT properties to obtain the following
transforms:

Q xi()=x(1—=1)+x(—=1—1)
Q x(t) =x(3t—6)
0 X3(l‘) dx(l 1)

Problem 6
Considere the following signal:

o [t > 1
x(’){ (t+1)/2, <1

@ Determine the expression of X(jw).
@ Considering the real part of X(jw), show that is the FT of the even part of x(z).
© Which is the FT of the odd part of x(¢)?
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Problems

Problem 7 (*)
Let’s suppose we know a given signal and its FT:

2

e <~
1+ w?

@ Use FT properties to compute the FT of te*"‘

@ Apply duality property to obtain the FT of (1+X2)2

Problem 8

Let be a signal with FT X(jw) = §(w) 4+ 6(w — 7) 4+ 6(w — 5) and let be h(t) = u(r) — u(t — 2).
@ Is x(¢) periodic?
Q@ Is x(¢) * h(z) periodic?
@ Can be periodic the convolution of two periodic signals?
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Problems

Problem 10

Given the following signal:
Problem 9 (*)

Let (z) the impulse response of a causal LTIS, xo(f) = e, 0=<r<l
with FT: 0, resto
H(jw) = —
(w) = jw+3 Determine the FT for each of the following

signals. (Note: begin by determining the FT of
xo(¢) and use properties).
x(t) x(ty

For a given input x(¢), the systems produces the
output y(r) = e~3u(t) —e~*u(t). Determine x(¢).

ofd) i Xoft)

Problemat1 (*)

Compute the convolution of the signals x(¢) and
h(t), by first computing their FT, and applying
then the convolution property of the FT and _w_g B
FT-1: ‘
Q x(r) = te=?u(r) with h(r) = e~ *u(r)
Q x(1) = te™?u(r) with h(r) = te™*u(r)
©Q x(¢) = e~ "u(r) with h(r) = e'u(—t)

xfty
Lrﬂlm
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Problems

Problem 12

Let be x(r) = e~ —Du(r — 2) and h(r) = u(t + 1) — u(r — 3). Verify that the FT of the convolution is
then same as the product of each FT.

v

Problema 13

Let be H(jw) the FT of the impulse response for a particual LTIS, compute %(z) in the following
cases:

Q H(jw)=20(w—1)—§(w+1)) +3(§(w —27) — §(w + 27)).

Q H(jw) = |H(jw)|d“H0w) | con |H(jw)| = 2 (u(w 4 3) — u(w — 3)) y ZH(jw) = f%w + .

o H(]UJ) sin’ (3w)zcos(w)
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Problems

Problema 14 (*)

Problems

Compute the FT of the following signals.

x()

figura a)

Problem 15 (*)

Considere a LTIS with a FT of the impulse
respones given by the figure (a). Considere also
the periodic signal in figure (b)

@ Find the impulse response A(z).

@ Compute the FT of x(¢).

© Compute the FS coefficients for x(z).

@ What is the power of the signalx(r)? What
percentage of this power is in the output?

© Compute the expression of the output signal
in the time domain.

v
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Problems
[ x
...... 1 .
Problem 16 _\/ \/
Considere the periodic signal, with period 7-0 -To/2 -To/4 To/4 To/2 o
sketched in the figure.
@ Find the FS coefficients.

Problem 17 (*
@ Compute its FT and sketch it (signal )
spectrum) Let be x(r) the input of a LTIS with the following

© This signal is the input for a system with a impulse response:

FT of the impulse response 2W, Wy Wit Wot
H(jw) = u(w + 47 /Ty) — u(w — 47 /Tp). h(t) = 7sinc( )SinC(f)
What percentage of the input signal power
is findiing in the output of the system? where W, > W,. Compute the output y(r), when
© Compute and sketch the output signal in the the input is:

time domain. 5
W, — W, —
x(t) = (Wi — Ws) sinc? ! Wzt
2 27
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Problems

Problema 18 (*)

Let be X(jw) the FT of x(¢), according to the
figure..

@ Find ZX(jw).

@ Find X(j0).

Q Find [ X(jw)dw.

Q Evaluate [*°_ ||X(jw)||*dw

© Sketch the inverse FT of Real{X(jw)}.

sV
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