Curso de Mecánica Física

Grado de Ingeniería en Sistemas Industriales, 2020-2021

Profesor: Daniel Fernández Fraile

Tema 6:

Cinética

Contenido del tema

- Cantidad de movimiento.
- Momento cinético.
- Energía cinética.
- Teoremas de Koenig.

Cantidad de movimiento de una partícula

Consideremos una partícula de masa *m* en movimiento. Definimos su *momento* o *cantidad de movimiento*, como el vector:

$$\boldsymbol{p} = m \, \boldsymbol{v}$$

En términos del momento, la Segunda Ley de Newton puede escribirse del modo:

$$\boldsymbol{F} = \frac{\mathrm{d}\boldsymbol{p}}{\mathrm{d}t}$$

Por tanto, si no actúan fuerzas sobre la partícula, su cantidad de movimiento permanece constante.

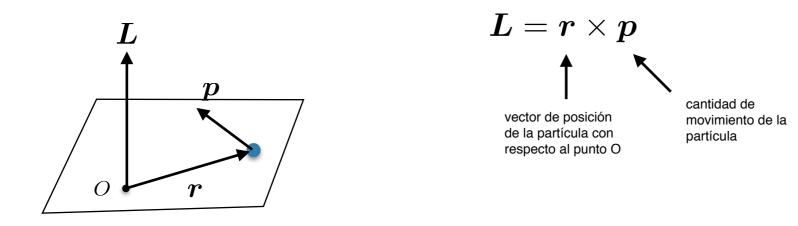
Cantidad de movimiento de un sistema de partículas

Para un sistema de partículas, el momento total es la suma de los momentos de cada una de las partículas:

$$oldsymbol{p} = \sum_i m_i oldsymbol{v}_i = \sum_i oldsymbol{p}_i$$

Momento cinético de una partícula

Consideremos una partícula de masa *m* en movimiento. Definimos su *momento cinético* o *momento angular* con respecto a un punto *O*, como el vector:



A partir de la definición de momento angular, y usando la Segunda Ley de Newton, obtenemos:

$$rac{\mathrm{d} oldsymbol{L}}{\mathrm{d} t} = oldsymbol{v} imes oldsymbol{p} + oldsymbol{r} imes rac{\mathrm{d} oldsymbol{p}}{\mathrm{d} t} = oldsymbol{r} imes oldsymbol{F} \equiv oldsymbol{M}$$

momento con respecto a O de la fuerza resultante sobre la partícula

Momento cinético de un sistema de partículas

Para un sistema de partículas, el momento cinético con respecto a un punto O es la suma de los momentos cinéticos de cada una de las partículas con respecto al mismo punto O:

$$oldsymbol{L} = \sum_i oldsymbol{r}_i imes oldsymbol{p}_i = \sum_i oldsymbol{L}_i$$

Energía cinética de una partícula

Consideremos una partícula de masa *m* en movimiento. Definimos su *energía cinética* como la cantidad:

$$K = \frac{1}{2}m\mathbf{v}^2 = \frac{\mathbf{p}^2}{2m}$$

Inmediatamente, vemos que si la fuerza resultante sobre una partícula es *nula* o si es siempre *perpendicular a la trayectoria*, entonces su energía cinética se mantiene constante en el tiempo (también se dice *en ese caso que la energía cinética se conserva*):

$$\frac{\mathrm{d}K}{\mathrm{d}t} = m\boldsymbol{v} \cdot \boldsymbol{a} = \boldsymbol{v} \cdot \boldsymbol{F}$$

Energía cinética de un sistema de partículas

Para un sistema de partículas, la energía cinética es la suma de las energías cinéticas de cada una de sus partículas:

$$K = \sum_{i} \frac{1}{2} m_i \mathbf{v}_i^2 = \sum_{i} K_i$$

Primer teorema de Koenig

Nos permite expresar el momento angular de un sistema de partículas en términos del momento angular del centro de masas del sistema y la suma de momentos angulares de cada una de las partículas con respecto al centro de masas.

El momento angular del sistema es $~m{L} = \sum_i m_i m{r}_i imes m{v}_i$

Como vimos en el tema 5, el centro de masas se define como:

$$m{r}_{\mathrm{CM}} = rac{1}{M} \sum_i m_i m{r}_i \qquad ext{con} \qquad M = \sum_i m_i$$

Siempre podemos escribir, $~m{r}_i = m{r}_{ ext{CM}} + m{r}_i' ~~m{v}_i = m{v}_{ ext{CM}} + m{v}_i'$

Por tanto,

$$m{L} = \sum_i m_i m{r}_{\mathrm{CM}} imes m{v}_{\mathrm{CM}} + \sum_i m_i m{r}_i' imes m{v}_i' + \sum_i m_i m{r}_i' imes m{v}_{\mathrm{CM}} + \sum_i m_i m{r}_{\mathrm{CM}} imes m{v}_i'$$

Sin embargo, los dos últimos términos son cero (por la definición de CM), así que

$$oldsymbol{L} = oldsymbol{r}_{\mathrm{CM}} imes oldsymbol{p}_{\mathrm{CM}} + \sum_i m_i oldsymbol{r}_i' imes oldsymbol{v}_i'$$

(primer teorema de Koenig)

Segundo teorema de Koenig

Nos permite expresar la energía cinética de un sistema de partículas en términos de la energía cinética del centro de masas del sistema y la suma de energías cinéticas de cada una de las partículas con respecto al centro de masas.

La energía cinética del sistema es
$$\ K = \sum_i \frac{1}{2} m_i {m v}_i^2$$

Pero siempre podemos escribir $~oldsymbol{v}_i = oldsymbol{v}_{ ext{CM}} + oldsymbol{v}_i'$

Así que,
$$K = \sum_i \frac{1}{2} m_i (oldsymbol{v}_{\mathrm{CM}}^2 + 2 oldsymbol{v}_{\mathrm{CM}} \cdot oldsymbol{v}_i' + {oldsymbol{v}_i'}^2)$$

Pero sabemos que
$$\sum_i m_i oldsymbol{v}_i' = oldsymbol{0}$$

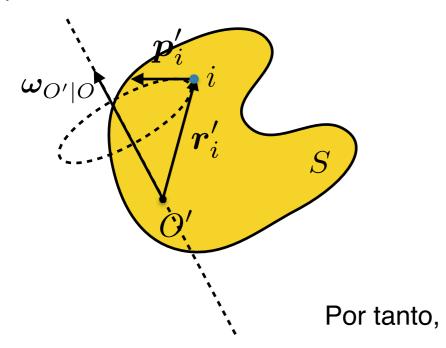
Por tanto,

$$K = \frac{1}{2}M\boldsymbol{v}_{\mathrm{CM}}^2 + \sum_{i} \frac{1}{2}m_i \boldsymbol{v}_i^{\prime 2}$$

(segundo teorema de Koenig)

Momento angular del sólido rígido

eje instantáneo de rotación



$$\mathbf{L}' = \sum_{i} \mathbf{r}'_{i} \times \mathbf{p}'_{i} = \sum_{i} m_{i} \mathbf{r}'_{i} \times \frac{\mathrm{d}\mathbf{r}'_{i}}{\mathrm{d}t}$$

Todos los vectores de posición rotan en torno al eje instantáneo de rotación. Como vimos en el tema 2,

$$\mathrm{d} \boldsymbol{r}_i' = \mathrm{d} \theta \, \boldsymbol{u} \times \boldsymbol{r}_i'$$

$$m{L}' = \sum_i m_i \, m{r}_i' imes m{\omega}_{O'|O} imes m{r}_i'$$

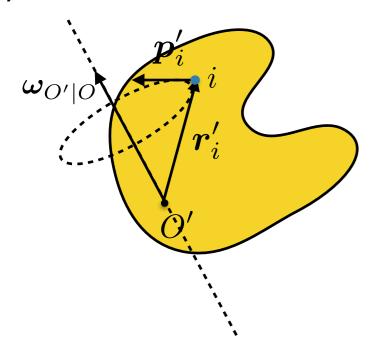
Esto lo podemos escribir como producto de matrices:

$$oldsymbol{L}' = oldsymbol{I}_{O'} \, oldsymbol{\omega}_{O'|O}$$

$$\boldsymbol{I}_{O'} = \begin{pmatrix} I_X & -I_{XY} & -I_{XZ} \\ -I_{YX} & I_Y & -I_{YZ} \\ -I_{ZX} & -I_{ZY} & I_Z \end{pmatrix} \qquad \boldsymbol{\omega}_{O'|O} = \begin{pmatrix} \omega_x \\ \omega_y \\ \omega_z \end{pmatrix}$$

Energía cinética del sólido rígido

eje instantáneo de rotación



$$K' = \sum_{i} \frac{1}{2} m \mathbf{v}_{i}'^{2} = \sum_{i} \frac{1}{2} m \frac{\mathrm{d} \mathbf{r}_{i}'}{\mathrm{d} t} \cdot \frac{\mathrm{d} \mathbf{r}_{i}'}{\mathrm{d} t}$$

$$= \sum_{i} \frac{1}{2} m(\boldsymbol{\omega}_{O'|O} \times \boldsymbol{r}'_{i}) \cdot (\boldsymbol{\omega}_{O'|O} \times \boldsymbol{r}'_{i})$$

Esto de nuevo lo podemos escribir como producto de matrices:

$$K' = \frac{1}{2} \,\boldsymbol{\omega}_{O'|O} \, \boldsymbol{I}_{O'} \,\boldsymbol{\omega}_{O'|O}$$