
Homework

Python-3

Sup’Biotech 3

Python

Pierre Parutto

November 21, 2016

Homework: Python-3
2016 - 2017

Preamble

Document Property

Authors Pierre Parutto
Version 1.0
Number of pages 8

Contact

Contact the assistant team at: supbiotech-bioinfo-bt3@googlegroups.com

Copyright

The use of this document is strictly reserved to the students from the Sup’Biotech school. This
document must have been downloaded from www.intranet.supbiotech.fr, if this is not the case
please contact the author(s) at the address given above.

c©Assistants Sup’Biotech 2016.

1 / 8

supbiotech-bioinfo-bt3@googlegroups.com
www.intranet.supbiotech.fr

Homework: Python-3
2016 - 2017

Contents

1 Introduction 3
1.1 File Architecture . 3
1.2 Submission . 3
1.3 Cheating . 3

2 Example 3
2.1 Question . 3
2.2 Answer . 3
2.3 Testing your code . 4

3 Introduction 4

4 Sequences 4
4.1 Is equal (2 points) . 4

Example . 4
4.2 Seek And Destroy (2 points) . 4

Example . 5

5 Binary Search Trees 5
5.1 Count Num Odd (2 points) . 5

Example . 5
5.2 BST To List (3 points) . 5

Example . 5

6 Sequence Alignment 6
6.1 Collecting Gaps (2 points) . 6

Example . 6
6.2 Similarity From An Alignment (4 points) . 6

Example . 6
6.3 Similarity From Sequences (5 points) . 7

Example . 8

2 / 8

Homework: Python-3
2016 - 2017

1 Introduction

In this homework we will apply the basic programming skills that you have just acquired to crack
some biology-related questions.

1.1 File Architecture

You must respect the following architecture for your work:
login l

AUTHORS

src

files.py

You must have a folder named with your login, this folder must contain:

1. A text file named AUTHORS containing your first and last names.

2. A folder named src that contains your code files.

1.2 Submission

• Deadline: until Wednesday December 7, 23h42;

• Submission: a zip file named: login l.zip to upload on the bioinformatics intranet.

A bad architecture of your submission may result in a 2 points penalty.

1.3 Cheating

Basically, DO NOT CHEAT. Your work will be automatically tested against cheating. If
two people are detected as cheaters, they will receive the grade 0 for the homework and the
administration will be told of their attempt. All detected cheaters are treated equally, I do not
care who wrote the code and who took it.

2 Example

Here is an example of how to answer an homework question.

2.1 Question

File: toto.py

Write the function called my_sum(a: int, b:int) -> int that returns the sum of a and b.

2.2 Answer

The content of the file toto.py is thus:

def my_sum(a, b):

return a + b

3 / 8

http://supbiotech-bioinfo.sites.djangoeurope.com

Homework: Python-3
2016 - 2017

2.3 Testing your code

Although not mandatory in this first homework, I strongly advise you to test your code.
You can do that by calling your function with some values and checking that the answer is what
you expect. For example, your file toto.py becomes:

def my_sum(a, b):

return a + b

print(my_sum(5, 9) == 16)

print(my_sum(5, 0) == 5)

print(my_sum(5, -5) == 0)

And the Python output is:

True

True

True

You must remove all your tests before you submit your code. In your code files I
want only function declaractions and nothing else.

3 Introduction

4 Sequences

File: seqs.py

4.1 Is equal (2 points)

Write the recursive function is_equal(l1: list, l2: list) -> bool that returns True if the
two ordered lists l1 and l2 are equal (they contain only the same values in the same order) and
False otherwise.

Example

>>> is_equal([1, 2, 3], [])

False

>>> is_equal([1, 2, 3], [1, 3])

False

>>> is_equal([1, 3, 5], [1, 3, 5])

True

4.2 Seek And Destroy (2 points)

Write the function seek_and_destroy(s: str, m: str) -> str that returns the string s where
all the appearances of the motif m have been removed.

Note : m will never be the empty string and len(m) <= len(s).

4 / 8

Homework: Python-3
2016 - 2017

Example

>>> seek_and_destroy("ATGTG", "G")

"ATT"

>>> seek_and_destroy("ATGTG", "TG")

"A"

>>> seek_and_destroy("AAAAA", "A")

""

5 Binary Search Trees

File: bst.py

A Binary Search Tree (BST) is defined in Python as a list of tree elements:

[left son, value, right son]

Where left son and right son are themselves BSTs (represented as lists). Thus for a node
t, t[0] gives the left son, t[1] the value of the node and t[2] the right son. An empty BST is
represented as an empty list []. In a BST, the value of a node must be greater than all the values
contained in its left son and smaller than all the values contained in its right son.

5.1 Count Num Odd (2 points)

Write the recursive function count_num_odd(t: list) -> int that returns the number of odd
values in the BST t.

Example

>>> count_num_odd([[], 5, []])

1

>>> count_num_odd([[[], 2, []], 5, [[], 8, []]])

1

>>> count_num_odd([[[[], 3, [[], 4, []]], 5, []], 7, []])

3

5.2 BST To List (3 points)

Write the recursive function BST_to_list(t: list) -> list that returns the ordered list of
all the elements contained in the BST t.

Example

>>> BST_to_list([[[], 1, []], 5, [[], 7, []]])

[1, 5, 7]

>>> BST_to_list([[[[], 3, []], 4, [[], 5, []]], 8, []])

[3, 4, 5, 8]

>>> BST_to_list([[[[], 3, []], 4, []], 8, [[[[], 9, []], 10, []], 11, []]])

[3, 4, 8, 9, 10, 11]

5 / 8

Homework: Python-3
2016 - 2017

6 Sequence Alignment

File: align.py

An alignment of two (nucleic or proteic) sequences consists in finding the superposition of
these sequences that maximizes over all sites the number of identical residues. This value is called
a similarity score. Alignment algorithms usually take into account three types of mutations:
substitution, insertion and deletion. A substitution produces two different residues at the same
position while insertion and deletion will produce gaps (represented by - characters) in one of the
sequence. Considering these three types of mutations, the similarity score of the two superposed
sequences α, β, s(α, β) is defined as:

s(α, β) =

|x|∑
i=0

σ(αi, βi)−
∑

g∈G(α)

γ(g)
∑

g∈G(β)

γ(g)

where σ(a, b) =

 m if a = b and (a and b 6= -)
n if a 6= b and (a and b 6= -)
0 if a or b = -

, G(s) gives the ensemble of gaps in the

sequence s (it corresponds to the function collect_gaps defined below), γ(g) = e× |g| gives the
score attributed to a gap of size |g| and m,n, e ∈ R. Usually, m, the score of a match is > 0 and
n the score of a substitution (mismatch) and e the cost of a gap of size one are < 0.

6.1 Collecting Gaps (2 points)

A gap consists in one or more - (dash) characters in one of the sequences. The size of a gap
g, denoted |g|, is the number of - characters composing it. A gap of size n represents either n
insertions in the sequence x if it is located in y or n deletions in x if it is located in x.

Write the function collect_gaps(s: str) -> list that returns the list strings corresponding
to all the gaps in the sequence s.

Example

>>> collect_gaps("ATTAG")

[]

>>> collect_gaps("ATT---AG-")

["---", "-"]

>>> collect_gaps("AT----AA--A-A-")

["----", "--", "-", "-"]

6.2 Similarity From An Alignment (4 points)

If the sequences are already aligned, it is easy to find their similarity score by computing s(α, β)
as defined above.

Write the function sim(alpha: str, beta: str, m: float, n: float, e: float) -> float

that given two aligned sequences alpha,beta and the three scoring parameters m, n, e, returns the
similarity score s(α, β).

Example

6 / 8

Homework: Python-3
2016 - 2017

>>> sim("ATGAC", "ATCCC", 1, -0.5, -0.5)

2

>>> sim("GC--GGG", "GAAAGGG", 1, -0.5, -0.5)

2.5

>>> sim("GCGCGC-", "G-----C", 1, -0.5, -0.5)

-2

6.3 Similarity From Sequences (5 points)

The Needleman-Wunsch algorithm allows to compute a measure of evolutionary-related similarity
between two (not already aligned) sequences x and y.

To compute the similarity, the algorithm builds a matrix S of size (len(x)+1)×(len(y)+1),
where each line corresponds to a character from the sequence x from top to bottom (s1,∗ corre-
sponds to x0, s2,∗ to x1, . . .) and each column to a character from the sequence y from left to right
(s∗,1 corresponds to y0, s∗,2 to x2, . . .). The first line and row correspond to the empty string for
x and y respectively.

The algorithm takes five inputs:

1. x, the first sequence;

2. y, the second sequence;

3. m, the cost of seeing two identical characters at the same position (also called a match);

4. n, the cost of seeing two different characters at the same position (also called a mismatch);

5. e, the cost of having a gap (-) at a position (an insertion or deletion).

The matrix S = si,j is filled as follows:

• The borders are filed with: s0,j = e× i (first line) and si,0 = e× i (first column);

• The interior is filled using the following formula:

si,j = max

m+ si−1,j−1 if xi−1 = yj−1
n+ si−1,j−1 if xi−1 6= yj−1
e+ si−1,j
e+ si,j−1

To fill S, you first have to fill the borders and then the interior. To fill the interior you will
need for each cell the cells directly to the left, above and on the top-left diagonal. You can thus
fill the matrix either line by line or column by column. The similarity score is given by the value
at the bottom-right corner: s|x|,|y|.

Write the function
needleman_wunsch(x: str, y: str, m: float, n: float, e: float) -> float that returns
the similarity score between x and y, given the score parameters m, n, e.

Note: To answer this question, you first have to create a numpy matrix, then fill it and finally
return the value contained in the bottom-right cell.

7 / 8

Homework: Python-3
2016 - 2017

Example

>>> needleman_wunsch("AAAA", "AA", 1, -0.5, -0.5)

1

>>> needleman_wunsch("GCACA", "GGCACA", 1, -0.5, -0.5)

4.5

>>> needleman_wunsch("GCGCGC", "GC", 1, -0.5, -0.5)

0

8 / 8

	Introduction
	File Architecture
	Submission
	Cheating

	Example
	Question
	Answer
	Testing your code

	Introduction
	Sequences
	Is equal (2 points)
	Example

	Seek And Destroy (2 points)
	Example

	Binary Search Trees
	Count Num Odd (2 points)
	Example

	BST To List (3 points)
	Example

	Sequence Alignment
	Collecting Gaps (2 points)
	Example

	Similarity From An Alignment (4 points)
	Example

	Similarity From Sequences (5 points)
	Example

