UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES)

HOJA 2: Límites y continuidad de funciones en \mathbb{R}^n .

- 2-1. Dibuja cada uno de los subconjuntos de \mathbb{R}^2 siguientes. Dibuja su frontera y su interior. Estudia si son abiertos, cerrados, acotados o convexos.
 - (a) $A = \{(x, y) \in \mathbb{R}^2 : 0 < ||(x, y) (1, 3)|| < 2\}.$
 - (b) $B = \{(x, y) \in \mathbb{R}^2 : y \le x^3\}.$
 - (c) $C = \{(x, y) \in \mathbb{R}^2 : |x| < 1, |y| \le 2\}.$
 - (d) $D = \{(x, y) \in \mathbb{R}^2 : |x| + |y| < 1\}.$
 - (e) $E = \{(x, y) \in \mathbb{R}^2 : y < x^2, y < 1/x, x > 0\}.$
 - (f) $F = \{(x, y) \in \mathbb{R}^2 : xy \le y + 1\}.$
 - (g) $G = \{(x,y) \in \mathbb{R}^2 : (x-1)^2 + y^2 \le 1, x \le 1\}.$
- 2-2. Sea A un subconjunto de \mathbb{R}^2 . Discute la veracidad o falsedad de las siquientes afirmaciones.
 - (a) Int(A) = A Fr(A).
 - (b) $Fr(A) = Fr(\mathbb{R}^2 A) = Fr(A^C)$.
 - (c) Fr(A) está acotada.
 - (d) A es cerrado $\iff A^C$ es abierto.
 - (e) A es acotado $\iff A^C$ no es acotado.
 - (f) A es $cerrado \iff Fr(A) \subset A$.
 - (g) A es abierto \iff $Fr(A) \cap A = \emptyset$.
- 2-3. Halla el dominio de las siguientes funciones:
 - (a) $f(x,y) = (x^2 + y^2 1)^{1/2}$. (b) $f(x,y) = \frac{1}{xy}$.

 - (c) $f(x,y) = e^{x} e^{y}$.
 - (d) $f(x,y) = e^{xy}$.
 - (e) $f(x,y) = \ln(x+y)$.
 - (f) $f(x,y) = \ln(x^2 + y^2)$.
 - (g) $f(x, y, z) = \sqrt{\frac{x^2 + 1}{yz}}$
 - (h) $f(x,y) = \sqrt{x-2y+1}$.
- 2-4. Halla la imagen de las siguientes funciones:

 - (a) $f(x,y) = (x^2 + y^2 + 1)^{1/2}$. (b) $f(x,y) = \frac{xy}{x^2 + y^2}$. (c) $f(x,y) = \frac{x^2 y^2}{x^2 + y^2}$.
 - (d) $f(x,y) = \ln(x^2 + y^2)$.
 - (e) $f(x,y) = \ln(1+x^2+y^2)$.
 - (f) $f(x,y) = \sqrt{x^2 + y^2}$.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS **CALL OR WHATSAPP:689 45 44 70**

www.j. g wap.tal respectivamente y f las unidades producidas.

(a) Halla, representa e interpreta distintas curvas de nivel de f.

- (b) Demuestra que si se duplican las unidades de trabajo y las de capital, entonces se duplica el nivel de producción.
- 2-7. Estudia la existencia y el valor de los siguientes límites.
 - (a) $\lim_{(x,y)\to(0,0)} \frac{x}{x^2+y^2}$.

 - (b) $\lim_{(x,y)\to(0,0)} \frac{xy^2}{x^2+y^2}$ (c) $\lim_{(x,y)\to(0,0)} \frac{3x^2y}{x^4+y^2}$
 - (d) $\lim_{(x,y)\to(0,0)} \frac{x^2-y^2}{x^2+2y^2}$
 - (e) $\lim_{(x,y)\to(0,0)} \frac{xy}{x^2+y^2}$
 - (f) $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^2+y^2}$
 - (g) $\lim_{(x,y)\to(0,0)} \frac{xy^3}{x^2+y^2}$.
- 2-8. Estudia la continuidad de las siguientes funciones:

Estudia la continuidad de las siguientes fund
(a)
$$f(x,y) = \begin{cases} \frac{x^2y}{x^3+y^3} & si\ (x,y) \neq (0,0) \\ 0 & si\ (x,y) = (0,0) \end{cases}$$

(b) $f(x,y) = \begin{cases} \frac{xy+1}{y}x^2 & si\ y \neq 0 \\ 0 & si\ y = 0 \end{cases}$
(c) $f(x,y) = \begin{cases} \frac{x^4y}{x^6+y^3} & si\ y \neq -x^2 \\ 0 & si\ y = -x^2 \end{cases}$
(d) $f(x,y) = \begin{cases} \frac{xy^3}{x^2+y^2} & si\ (x,y) \neq (0,0) \\ 0 & si\ (x,y) = (0,0) \end{cases}$

(b)
$$f(x,y) = \begin{cases} \frac{xy+1}{y}x^2 & \text{si } y \neq 0 \\ 0 & \text{si } y = 0 \end{cases}$$

(c)
$$f(x,y) = \begin{cases} \frac{x^4y}{x^6+y^3} & \text{si } y \neq -x^2 \\ 0 & \text{si } y = -x^2 \end{cases}$$
.

(d)
$$f(x,y) = \begin{cases} \frac{xy^3}{x^2 + y^2} & si(x,y) \neq (0,0) \\ 0 & si(x,y) = (0,0) \end{cases}$$

2-9. Sea el conjunto $A=\{(x,y)\in\mathbb{R}^2|0\leq x\leq 1,0\leq y\leq 1\}\ y$ la función $f\colon A\longrightarrow\mathbb{R}^2$ definida mediante

$$f(x,y) = \left(\frac{x+1}{y+2}, \frac{y+1}{x+2}\right)$$

Comprueba que se verifican las hipótesis del Teorema de Brouwer Â; Es posible determinar el (o los) punto(s) fijo(s)?

- 2-10. Considera la función $f(x,y)=3y-x^2$ definida en el conjunto $D=\{(x,y)\in\mathbb{R}^2:x^2+y^2\leq 1,0\leq x<0\}$ $1/2, y \ge 0$. Dibuja el conjunto D y las curvas de nivel de f. Alcanza f un máximo y un mínimo sobre D?
- 2-11. Sean los conjuntos $A = \{(x,y) \in \mathbb{R}^2 | 0 \le x \le 1, 0 \le y \le 1\}$ $y = \{(x,y) \in \mathbb{R}^2 | 1 \le x \le 1, -1 \le y \le 1\}$ $y = \{(x,y) \in \mathbb{R}^2 | 1 \le x \le 1, -1 \le y \le 1\}$ sea la función

$$f(x,y) = \frac{(x+1)(y+\frac{1}{5})}{y+\frac{1}{2}}$$

¿Qué se puede afirmar de los extremos absolutos de f sobre A y B?

- 2-12. Sea el conjunto $A = \{(x, y) \in \mathbb{R}^2 : 0 \le y \le \ln x, 1 \le x \le 2\}.$
 - (a) Dibujar el conjunto A, su frontera y su interior, y discute si A es un conjunto abierto, cerrado, acotado, compacto y/o convexo, razonando tus respuestas.
 - (b) Demuestra que la función $f(x,y) = y^2 + (x-1)^2$ tiene un máximo y un mínimo en A.
 - (c) Utilizando las curvas de nivel de f(x,y), hallar el máximo y el mínimo de f en A.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70