DEPARTAMENTO DE MATEMATICA APLICADA UNIVERSIDAD COMPLUTENSE DE MADRID

Analisis de Variable Real. Curso 13–14. Sucesiones y series de funciones. Hoja 10

207 Sea $D \neq \emptyset$ y sea $\mathcal{L}^{\infty}(D, \mathbb{K})$ el conjunto de todas las funciones $f: D \to \mathbb{K}$ ($\mathbb{K} = \mathbb{R}$ ó \mathbb{C}) acotadas.

- i) Probar que $V = \mathcal{L}^{\infty}(D, \mathbb{K})$ es un espacio vectorial y que $||f||_{\infty} = \sup_{x \in D} |f(x)|$ es una norma en V.
- ii) Usar el problema 45 para construir la métrica en V $d_{\infty}(f,g) = ||f g||_{\infty}$. Describir una bola y describir las sucesiones convergentes a cero en esa métrica.
- iii) Probar que la convergencia en d_{∞} es la convergencia uniforme.

208 Sea $D \neq \emptyset$ y $f_n : D \to \mathbb{K}$ ($\mathbb{K} = \mathbb{R}$ ó \mathbb{C}) una sucesión de funciones que converge uniformemente $a \ f : D \to \mathbb{K}$.

i) Si las funciones f_n son acotadas, probar que f es acotada.

Recíprocamente, si f es acotada probar que, excepto quizas una cantidad finita de $n \in \mathbb{N}$, todas las funciones f_n son acotadas.

En cualquiera de los dos casos anteriores probar que de hecho existe una constitute M > 0 tal que

$$||f_n||_{\infty} = \sup\{|f_n(x)|, x \in D\} \le M$$

para todo de $n \in \mathbb{N}$, excepto quizás una cantidad finita.

- ii) En la situación anterior supongamos que $I\!\!K = I\!\!R$ y $g: [-M, M] \to I\!\!R$ es continua. Concluir que $g \circ f_n$ converge uniformemente a $g \circ f$.
- iii) Si D es un espacio métrico y f es continua y $x_n \to x$ en D probar que $f_n(x_n) \to f(x)$. Poner ejemplos de que esto es falso si f no es continua o si sólo hay convergencia puntual.

209 Consideremos en el espacio vectorial V = C([0,1]) la magnitud

$$||f||_1 = \int_0^1 |f(t)| dt.$$

- i) Probar que $\|\cdot\|_1$ es una norma, describir una bola para la métrica $d_1(f,g) = \|f-g\|_1$ y describir las sucesiones convergentes a cero en esa métrica.
- ii) Probar que si $f_n \to f$ en d_1 entonces

$$\lim_{n\to\infty} \int_0^1 f_n(t) dt = \int_0^1 f(t) dt.$$

- iii) Probar que si $f \in V$ tenemos que $||f||_1 \le ||f||_{\infty}$. ¿Qué implica esto respecto de la convergencia uniforme de funciones?.
- iv) Construir una sucesion de Cauchy en V para d₁ que no converge a una función continua.

Indicación: Construir una sucesion de funciones continuas que, cuando $n \to \infty$, desarrolla un salto en $t_0 = 1/2$.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70

 $\int -1 \quad x \in (-\infty, -\frac{1}{n}]$

www.cartagena99.com \overline{no} se hace responsable de la información contenida en el presente documento en virtud al Artículo 17.1 de la Ley de Servicios de la Sociedad de la Información y de Comercio Electrónico, de 11 de julio de 2002. Si la información contenida en el documento es ilícita o lesiona bienes o derechos de un tercero háganoslo saber y será retirada.

$$\lim_{n \to \infty} \int_{1}^{2} e^{-nx^{2}} dx$$

213 Supongamos que $\sum_{n=1}^{\infty} |a_n| < \infty$ y $\sum_{n=1}^{\infty} |b_n| < \infty$. Probar que si $a_0 \in \mathbb{R}$ entonces

$$f(t) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos(nt) + \sum_{n=1}^{\infty} b_n \sin(nt)$$

define una función continua en \mathbb{R} y que además es 2π -periódica, es decir $f(t) = f(t+2\pi)$ para todo $t \in \mathbb{R}$.

Dar condiciones sobre los coeficientes a_n, b_n para que f sea de clase C^1 , o clase C^2 , o clase C^k , $k \in \mathbb{N}$. Probar que todas esas derivadas son 2π -periódicas.

214 Probar que $V=\{f\in C([0,1]),\ \int_0^1 f(t)\,dt=0\}$ es un subespacio vectorial cerrado del espacio vectorial métrico $(C([0,1]), d_{\infty})$. Idem si $V = \{ f \in C([0,1]), \int_0^1 f(t)g(t) dt = 0 \}$ siendo g una función continua dada.

215 Estudiar la convergencia puntual y encontrar intervalos de IR en los que la convergencia sea

$$i) \sum_{n=1}^{\infty} \frac{\sin^2(nx)}{n^2}, \quad ii) \sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}, \quad iii) \sum_{n=1}^{\infty} \frac{\sin(t)}{(1+\sin(t))^n}$$

216 Calcular $\sum_{n=1}^{\infty} \int_{1/2}^{1} f_n(t) dt$ siendo $f_n(t) = \frac{e^t - 1}{e^{nt}}$.

217 Supongamos que la serie de potencias $f(x) = \sum_{n=0}^{\infty} a_n x^n$, con $\{a_n\} \subset \mathbb{R}$ tiene radio de converqencia R > 0.

Probar que f es par si y sólo si $a_{2j+1}=0$, j=0,1,2... y que f es impar si y sólo si $a_{2j}=0$, $j = 0, 1, 2 \dots$

218 Usando el Problema 138 probar que no existe una cota superior uniforme de todas las derivadas $de f(t) = \begin{cases} e^{-1/t^2} & \text{si } t \neq 0 \\ 0 & \text{si } t = 0 \end{cases} en \text{ ningun intervalo que contenga a } t = 0.$

219 Encontrar el disco de convergencia de las series de potencias $f(x) = \sum_{n=0}^{\infty} a_n (x-x_0)^n$, con $\{a_n\} \subset \mathbb{R} \ y \ x_0 \in \mathbb{R}$

220 Obtén un desarrollo en serie de potencias centrada en $x_0=0$ para las siguientes funciónes i) $x\cos(x)$, ii) $\sin(t^2)$, iii) z^3e^{2z} , iv) $\sinh(t) + 2\cos(3t)$, v) $(x+2)e^x$ vi) $F(t) = \int_0^t e^{-s^2} ds$, *vii*) $\frac{1}{x-1} + x^2 \sin(3x)$.

CLASES PARTICULARES, TUTORÍAS TÉCNICAS ONLINE LLAMA O ENVÍA WHATSAPP: 689 45 44 70

ONLINE PRIVATE LESSONS FOR SCIENCE STUDENTS CALL OR WHATSAPP:689 45 44 70