VPl A fuid of density p and viscosity u flows along an infinitely long rectangular channel of height
b and width a due to the displacement of the top wall, which moves with constant longitudinal
velocity V, inducing in the liquid a steady unidirectional motion with a single velocity component

Yz (y7 z )
1. Write the conservation equation with boundary conditions that determines vz(y, 2).

2. Express the problem in dimensionless form by introduction of appropriate variables 7 = v [V,
n=y/a and § = z/b, demostrating that the solution is only a function of A = a/b.

3. Consider the limit a 3> & (A > 1) and determine the approximate solution for & {note that
this solution fails near the vertical bounding walls, in relatively thin regions of width dy ~ b).

4. In the limit A > 1, determine the volume flux, as well as the force acting on the upper wall
and the power needed to move it (per unit length).

5. Consider the limit a < b (A <« 1), demonstrating that, in the first approximation, the fluid
remains at rest in most of the channel, except in a region located near the upper wall. Write
the reduce problem that determines the solution in this limiting case.
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INTRODUCTION TO FLUID MECHANICS June 27, 2013

PROBLEM 3 (1 hour)

A perfect liquid of constant density p and constant viscosity p fills the space between two infinite
parallel walls separated by a distance 2h, that move parallel to themselves in the same direction
with a constant velocity U. As shown in the figure, a very thin solid plate of length L > h is placed
at the center of the channel. In the regions far upstream and far downstream from the plate the
liquid moves with uniform velocity U due to the motion of the confining walls, and the modified
pressure takes uniform values P(x — —o0) — P_o and P(z — c0) — P, respectively.

1.

Provide the criterion that must be accomplished for the flow to be dominated by viscous
forces. (1 point)
. Obtain the velocity field in the region occupied by the plate, in terms of the unknown pressure
gradient P, = —0P/0x. (3 points)
. Obtain the pressure drop P_o — P, as well as the pressure gradient F;. (3 points)
. Determine the forces (per unit spanwise length) that the liquid exerts on the confining walls,
F,, and on the inner plate, I}, as well as the power that must be applied to drive the walls.
(3 points)
. If all the inner walls are thermally isolated, determine the temperature increase in the liquid
between two points situated far downstream and far upstream, Ty, —T_ . To that end, apply
the energy equation in integral form to an appropriately defined control volume (1 extra
point).
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INTRODUCTION TO FLUID MECHANICS Jan 14, 2013

PROBLEM 4 (1 hour)

A cylindrical piston of weight W and radius R, whose upper side is exposed to the atmosphere,
slides without friction inside a coaxial container of the same radius. The initial distance between
the lower side of the piston and the bottom of the tank is hg < R. Below the piston, the container is
filled with liquid of density p and viscosity u. The piston falls due to its own weight, and forces the
liquid to leave the tank, discharging to the atmosphere through a circular hole of radius aR < R.

\g |
! R
Pa \
‘W
= OBy =
- — — %, = — —

The known data are (p, i, ho, R, o, W, g, ps). The objective is to determine the vertical position of
the piston as a function of time, h(t), under the assumption of dominant viscous forces in the liquid.
Gravitational forces in the liquid can be neglected (P = p). The following steps are suggested:

1.

(2 points). Using the radial momentum equation, find the liquid velocity profile, v,(z,t), in
the slender region aR < r < R, 0 < z < h(t), as a function of h(t), and of the pressure
gradient P, = —dp/0r.

(2 points). Obtain p(r,t) as a function of h(t), h(t) = dh/dt, and known data. To that end,
integrate the continuity equation across the gap (in the z direction), finding the second order
differential equation satisfied by p(r,t). To solve the equation, note that the pressure drop
across the non-slender turning region 0 < r < aR, 0 < z < h(t), can be neglected, so that
p(r = aR) ~ p,. Note also that v, = 0 at the container wall r = R.

(2 points). Find the vertical force acting on the piston due to the liquid and the external

atmosphere, F', as a function of h(t), h(t), and known data. Note that it proves convenient
to introduce a function f(«) to express the dependence of F' on a.

. (2 points). Using Newton’s second law applied to the piston in the vertical direction, find the

second-order ODE with initial conditions satisfied by h(t).

. (2 points). Obtain h(t), as well as the volume flux through the hole, Q(t), under the assum-

ption of negligible inertia of the piston (acceleration of the piston much smaller than g). Note
that, in this approximation, the pressure forces balance the weight of the piston, the ODE
becomes of first order, and only the initial condition h(0) = hg can be satisfied.

. (2 additional points). Provide the condition that must be accomplished for viscous forces to

be dominant in the liquid, as well as the criterion of negligible inertia of the piston, in terms
of the governing parameters (p, p, ho, R, o, W, g, pa)-
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INTRODUCTION TO FLUID MECHANICS Dec 18, 2012

PROBLEM 4 (1 hour)

The system sketched in the figure is designed to steadily pump fluid of constant density p and cons-
tant viscosity u from a reservoir, where the modified pressure has a constant value Py, to another
one at pressure Py+ AP (AP > 0). To that end, a pair of parallel belts of length L, separated by a
distance h < L, are driven at constant velocities V; and V,,, dragging the liquid towards the large
pressure reservoir.

The liquid flow can be assumed steady, two-dimensional (spanwise length much larger than h), and
dominated by viscous forces in the gap. It proves convenient to introduce a cartersian coordinate
system (z,y), where x and y are the directions parallel and perpendicular to the belts, respectively.
The only known parameters are (p, u, Py, AP, L, h,V;, V).

p
(o] Vu (o]
B i h Py+ AP
) v, (
L

1. (1 point). Under the assumption of dominant viscous forces, obtain the characteristic velocity,
Vap, induced in the liquid by the overpressure AP. Show that the pump will only work if
the dimensionless parameter A = (h2AP)/[uL(V; + V,,)], is sufficiently small.

2. (1 point). Provide the condition(s) that must be satisfied for the flow to be dominated by
viscous forces.

3. (2 points). Determine the streamwise velocity profile in the gap between both belts, v, (z,y),
as well as the volume flux per unit spanwise length, ¢. The results must be expressed as a
function of known data, and of the reduced pressure gradient, P.

4. (2 points). Determine P}, as well as the pressure distribution inside the channel, P(z).

5. (2 points). Find the external forces per unit spanwise length in the x-direction, F}EfT and
Ff’;‘T, that must be exerted on the lower and upper belts to keep the motion, as well as the

power per unit spanwise length that needs to be supplied to drive the system, W.

6. (2 points). Knowing that the net mechanical energy gained by the liquid per unit time and per
unit spanwise length during the pumping process is Wusefu] = ¢ AP, determine the efficiency
of the pumping system, n = Waseful / W, as a function of the governing parameters. Study
the particular cases a) V; = V,,, and b) V; = 0, demonstrating that in both cases the result
can be expressed as a function of the single parameter A defined above. In case b), find the
maximum efficiency, Nmax as well as the corresponding value of Apax.

7. (1 additional point). Discuss the solution of Problem 3 in the light of the results obtained in
Problem 4.
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INTRODUCTION TO FLUID MECHANICS Jan 10, 2012

The L-shaped arm of length L depicted in the figure moves vertically approaching the horizontal
wall, forming a thin channel of decreasing uniform thickness h(t) <« L. A liquid of density p
and viscosity p fills the channel. Due to the arm displacement, the liquid is forced to move out,

discharging to the surrounding atmosphere, where the reduced pressure is Py,. For a known value
of h(t),

1. Give the conditions for the motion in the channel to be dominated by viscosity.

2. Determine the velocity profile across the channel v,(z,y,t), the associated volume flux Q =
foh vzdy, and the reduced pressure distribution P(z,t), including the value P,(t) at z = 0.

3. Calculate the force acting on the arm F = (F,, Fy).

4. Obtain the torque exerted on the arm with respect to its end point A.
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INTRODUCTION TO FLUID MECHANICS Dec 16, 2011

% A plate of length L is initially sitting on a horizontal plane in the presence of a stagnant liquid
N atmosphere with reduced pressure Py,. At a given instant, we begin to rotate the plate with constant
angular velocity w = da/dt by applying a given torque M at its left end, as sketched in the figure.

For the analysis, use the approximation A(z,t) = z tan(e) ~ zq, valid for o < 1.

1. Demonstrate that for values of o sufficiently smaller than a critical value, to be determined,
the fluid motion in the gap formed between the plate and the wall is dominated by viscosity.

2. Obtain the velocity profile v, in the gap as a function of the unknwon value of Pi(z,t) =
—OP/0x as well as the associated volume flux at a given section Q = Jo 7 vedy.

3. Using continuity, write an equation linking Q and w, and integrate it to compute the pressure
distribution P(z,t) (in the integration, you may anticipate that 3P, — 0 as ¢ — 0).

4. Determine the torque M (t) needed to provide a constant angular velocity w.
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\ﬁ : The cylindrical bearing shown in the figure includes an external fixed casing of radius R and a
shaft rotating with angular velocity w of radius R such that Ry — R < R. The centers are shifted
a small distance e, called exentricity, so that in between both cylinders there exists a thin circular
gap of thickness h ~ e ~ Ry — R < R full of a liquid of density p and viscosity p.

1. Show by simple trigonometric reasoning that the gap thickness can be expressed as

h(f) = Ry — R+ ecosb.

9. Obtain the azimuthal velocity distribution vy in terms of the distance y to the fixed casing

and the unknown value of the induced pressure gradient P} = ~R18

P/d0.

3. Determine the circulating volume flux Q= (;1 vydy as well as the pressure distribution
P(#) — P(0), where P(0) is the unknown value of the pressure at 6 = 0, which depends on

the pressurization conditions.

4. Calculate the torque and the force acting on the rotating shaft.
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\J\:\ \ To investigate the performance of windshield wipers consider as a simplified model the L-shaped
arm of the figure moving with velocity V' with respect to a horizontal surface. The wiper is pulled
from the end point A with a force F, parallel to the wall, dragging in its motion the fluid located
between the arm and the wall. To study the problem, we shall use a reference frame moving with
the arm, as indicated in the figure. The outer pressure is p,.

1. Determine the velocity v, across the channel formed between the wiper and the wall.
. Find the pressure distribution p(z) including the value found at the end wall z = 0.

2
3. Compute the force F; necessary to move the wiper.

-

Obtain the moment exerted with respect to the end point A.

5. If W is the weight of the wiper, determine the critical value of V' beyond which the end z = 0
rises, letting the liquid flow out.
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\\‘2\ Consider the unidirectional periodic motion induced in an infinitely long circular pipe of radius a
by an oscillatory pressure gradient F; = Acos(wt). Write the conservation equation with boundary
conditions that determine the axial velocity v;(r, t) and show how the problem can be solved exactly
by separation of variables. Study separately the limits a®w/v 3> 1 and a’w/v < 1 and obtain the
corresponding limiting solutions. In biofluid mechanics the square root a{w/ V)I/ 2 jis called the
Womersley parameter, which takes fairly large values for blood flow in large arteries, as you can
see by using the values corresponding to the human aorta (p/p~4x10"2 cm?/s, a ~ 1.2 cm, and
w = 2 s~1), but that decreases for flow is smaller arteries. Find how small the artery radius needs
4o be for Poiseuille flow to be approximately applicable.
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?OS' The conveyor belt of velocity V shown in the figure is used to pump a liquid of density p and
viscosity p along a straight inclined channel of angle o including two stretches of equal length L
with different heights 2h and h, respectively.

= Give the conditions for the liquid-film motion to be dominated by viscosity.
= Compute the pressure distribution along the channel p(x).
s Determine the volume flux @ as well as the minimum value of V' for which @ > 0.

= Obtain the power needed to drive the conveyor belt.
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Q% We want to lift the cylindrical body shown in the figure. A layer of oil exists between the body
and the horizontal solid surface. The radial inflow caused by the lifting motion of the body is
associated with the existence of underpressures in the liquid film, inducing an adhesion force to be
computed here for the case of constant velocity h= dh/dt.

= Show that the liquid motion in the liquid film between the body and the solid surface is
dominated by viscosity for values of h much smaller than v/h.

= Obtain the radial velocity profile v, as a function of the radial pressure gradiente P, =
—0P/or.

= Using continuity, derive an equation for the pressure distribution P(r,t).

= Compute the pressuse distribution as well as the adhesion force acting on the body.
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VET
The vertical conical pipe of length L shown in the figure has a radius that increases linearly
from the lower end according to a(z) = ao(1+az/L), with a, < 1 and a ~ O(1}. The pipe, open at
the top, is initially full of a liquid of viscosity x and density p. At a given time, the lower end opens
up and the liquid discharges to the atmosphere under the action of gravity. Give the condition for
the motion to be dominated by viscosity and, in that case, obtain the evolution of h(t) as well as
the time needed to complete the discharge.
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\]€G The bottom end of an empty vertical tube of radius a, closed at the top, is put in contact with
a pool of oil. Because of the ambient overpressure, the liquid begins to flow into the tube, forming

a column of increasing height h(t) whose evolution in time is to be investigated assuming that the
motion is dominated by viscosity. In particular:

» Obtain the value of the height ho, corresponding to the equilibrium position, reached asym-
ptotically for large times.

= Give the condition that determines whether the motion is dominated by viscosity.

= Obtain the evolution of h(t) as well as the pressure distribution along the pipe p(z,t) for
U< .

= Compute the force acting on the pipe as a function of time F = F,(t)e,.
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f 9 A vertical tube of radius a open at the top contains initially two columns of heights I; and Iy of
two inmiscible liquids with different densities p; and po and viscosities p1; and po. At a given instant
of time, the bottom end of the pipe opens up, releasing the fluid 2 to the atmosphere. During the
discharge process, determine the volume flux as a function of time as well as the pressure distribution
along the pipe. Calculate the time for complete discharge of the bottom liquid column.
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W Lo m‘& m_n ame--er\
\j? The liquid g i at pressure pg-discharges to the atmosphere, where the pressure

is po < pe, through a cyhndrlcal pipe of diameter D and length L > D. To control the volume flux
@ that circulates, a cylindrical bar of diameter aD is inserted coaxially from the exit, as shown in
the figure, to partially block the liquid flow in the final stretch of the pipe.

1. Give the criterion for the motion in the tube to be dominated by viscosity.

2. Determine, in terms of the value of the pressure at the end of the tube p,, the velocity field
found for 0 < z/L < (1 — ) and for (1 — 8) < 2/L < L, where L is the insertion length.

3. Obtain the volume flux @ and the value of p, as a function of 3.
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\]</77 A fluid of density p and viscosity  is confined between two infinitely long coaxial cylinders of

oz fp . K1Y o vz Y
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radii @ and aa, with @ < 1, aligned in the z direction. The fluid is forced to move steadily due to
the presence of a known reduced pressure gradient P, = —9P/dz and also due to the backward

motion of the outer cylinder, with velocity V.
1. Determine the fluid velocity vz(r)-
2. Obtain the power needed to move the outer cylinder.

3. Calculate the value of V for which the volume flux in the pipe is identically zero.
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Vet

Consider the periodic motion induced in a liquid layer of thickness h when the bottom wall moves
with velocity V cos(wt). Write the equation with boundary conditions that determines v,(y,1).
Consider separately the cases wh?/v > 1 and wh?/v < 1. Obtain the general solution and show
how it reduces to the limiting solutions studied earlier in the appriate limits
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